СТОЛКНОВЕНИЕ ПЛИТ И ЗОНЫ СУБДУКЦИИ

 

Если постоянно возникает так много нового морского дна, а Земля не расширяется (и существует достаточно доказательств этого), тогда, чтобы компенсировать этот процесс, что‑то на глобальной коре должно разрушаться. Именно это происходит на окраинах большей части Тихого океана. Здесь литосферные плиты сближаются, и на их границах одна из сталкивающихся плит погружается под другую и уходит глубоко внутрь Земли. Такие участки столкновения плит называются зонами субдукции (погружения, подныривания одной плиты под другую); на поверхности Земли они отмечаются глубокими океаническими рвами (желобами) и активными вулканами (рис. 5.4). Грандиозные цепи вулканов, образующие так называемое огненное кольцо, протянувшееся вдоль берегов Тихого океана, – Анды, Алеутские острова, а также вулканы Камчатки, Японии и Марианских островов – все они обязаны своим существованием явлению субдукции.

 

Рис. 5.4. Схематический поперечный разрез зоны субдукции (верхняя часть, не в масштабе) показывает литосферную плиту, опускающуюся в глубины мантии, и активные вулканы над нею. В нижней части рисунка точками изображены положения очагов землетрясений, зафиксированных под желобом Тонга в юго‑западной части Тихого океана. В совокупности они отмечают расположение погружающейся плиты до глубины приблизительно 700 километров. Отметки на горизонтальной шкале показывают расстояние от желоба. Составлено с частичным использованием рисунка 4‑10 из книги П. Дж. Уилли «Как работает Земля». Изд‑во «Джон Уайли и Сыновья», 1976.

 

Никто не может точно сказать, как именно начинается субдукция, когда две плиты начинают сближаться, но ключом к их взаимодействию является, по‑видимому, плотность пород. Плотная океаническая кора может подвергнуться субдукции, исчезнув в глубине Земли почти бесследно, в то время как сравнительно легкие континенты всегда остаются на поверхности. Вот почему дно океанов всегда молодо, а континенты стары: морское дно не только непрерывно образуется в разломах океанических хребтов, но и постоянно уничтожается в зонах субдукции. Как мы уже видели, отдельные части континентов имеют возраст почти четыре миллиарда лет, в то время как самые древние части морского дна не старше 200 миллионов лет. Один из первых пропагандистов идеи континентального дрейфа сравнил континенты с пеной, накапливающейся на поверхности кастрюли с кипящим супом, – живое, хотя не сказать, чтобы очень точное сравнение.

Реальность субдукции подтверждается землетрясениями, которые ее сопровождают. Хотя сейсмичность является характерной особенностью всех типов границ между плитами, только зоны субдукции отличаются глубокими землетрясениями, которые происходят на глубине 600 километров или более. Глубокие землетрясения были известны задолго до того, как тектоника плит приобрела популярность. В 1928 году японский сейсмолог К. Вадати сообщил о землетрясениях, происшедших под Японией на глубине нескольких сот километров. Приблизительно через двадцать лет другой геофизик, Хуго Бениоф, показал, что и в других частях света существуют «большие разломы», отмечающиеся частыми землетрясениями, которые погружаются глубоко в мантию из океанских рвов, как бы продолжая их на глубину. Он описал несколько таких разломов, расположенных как вдоль западного побережья Южной Америки, так и на юго‑западе Тихого океана в желобе Тонга. Эти области в то время не были интерпретированы как зоны субдукции и лишь позднее стало ясно, что эти гигантские плоско‑наклонные зоны повышенной сейсмичности точно следуют по пути плит, погружающихся внутрь мантии (рис. 5.4). Землетрясения возникают потому, что погружающиеся в горячую мантию части океанических плит остаются сравнительно холодными, в противоположность окружающим их породам мантии, остаются даже на больших глубинах настолько хрупкими, что в них могут возникать трещины, порождающие землетрясения. Некоторые из самых глубоких землетрясений могут также возникать по той причине, что минералы в погружающихся частях плит становятся неустойчивыми в обстановке больших давлений, которым они там подвергаются, и разрушаются внезапно, образуя более плотные минералы, резко изменяя при этом свой объем.

В противоположность сравнительно спокойным прорывам базальтовой лавы вдоль осей расхождения плит, вулканизм, свойственный зонам субдукции, часто проявляется очень бурно. Хотя эта вулканическая активность Земли и создает потрясающе прекрасные вулканы, как, например, гора Фудзи в Японии, она также вносит свой вклад во множество катастроф, сопровождающих историю Земли. Примерами таких катастроф являются погребение древнего римского города Помпеи под слоем горячего вулканического пепла, выброшенного соседним вулканом Везувий, грандиозное уничтожение всего живого вокруг в результате взрыва вулкана Кракатау в Индонезии в 1883 году и совсем недавно взрыв вулкана Пинатубо на Филиппинских островах в 1991 году. Почему существует вулканизм в зонах субдукции? В главе 2 мы намекнули на возможный ответ: океанические плиты содержат воду. В мощных толщах осадков, накапливающихся на океанском дне, по мере того как оно движется от места своего образования у хребтов к месту своего уничтожения в зонах субдукции, накапливается вода. Кроме того, во время этого долгого путешествия происходит реакция некоторых минералов базальтовой коры с морской водой и образуются другие, водосодержащие минералы. Хотя во время столкновения плит часть этих осадков соскребается с опускающейся плиты и выбрасывается на сушу, другая их часть уносится в мантию на значительные глубины. Во время опускания этих осадков вдоль зоны субдукции большая часть свободной воды, содержащейся в порах между зернами, выжимается увеличившимся давлением и пробивается обратно на поверхность. Но какая‑то ее часть остается, как и вода, связанная в структуре минералов коры. В конце концов увеличивающиеся температура и давление изгоняют из пород и эту воду, и она просачивается в мантию в верхней части зоны субдукции. Именно этот процесс вызывает вулканизм. На тех глубинах, где вода изгоняется из пор и из самих минералов, окружающая мантия уже весьма горяча, а добавление воды понижает температуру плавления пород настолько, что это плавление начинается. Этот принцип должен быть знаком жителям северных городов, которые зимой рассыпают на улицах соль, чтобы понизить температуру плавления (таяния) льда.

Во всех субдукционных зонах Земли активный вулканизм неизбежно возникает приблизительно на одной и той же высоте над опускающейся плитой, а именно – около 150 километров. Такова приблизительно глубина, на которой разрушаются водосодержащие минералы,

освобождая воду, которая способствует плавлению. Характерным для этой обстановки типом пород является андезит, получивший свое название, как вы можете догадаться, по названию горной цепи в Южной Америке (Анды), где эта порода весьма распространена. Лабораторные эксперименты показывают, что андезит представляет собой именно ту породу, образование которой следовало бы ожидать, если породы мантии расплавить в присутствии воды, выделившейся из погрузившейся плиты; эта вода объясняет также взрывной, бурный характер вулканизма, свойственного зонам субдукции. По мере приближения магмы к земной поверхности растворенная в ней вода и другие летучие компоненты в ответ на понижение давления быстро расширяются; это расширение часто имеет характер взрыва.

Многие из самых крупных землетрясений происходят вдоль зон субдукции. Это и не удивительно, если подумать, что происходит в этих областях: два гигантских куска земной коры, каждый толщиной около 100 километров, сталкиваются друг с другом, причем одна плита вталкивается под другую. К несчастью, некоторые районы, расположенные вблизи зон субдукции, очень плотно заселены. Мы можем предсказать со стопроцентной уверенностью, что в таких областях мощные разрушительные землетрясения будут продолжаться; вряд ли это будет большим утешением перед перспективой таких катастрофических событий, как землетрясение в Кобэ в Японии, происшедшее в начале 1995 года.

И все же Земля – это динамичная планета; даже зоны субдукции существуют не вечно, по крайней мере с точки зрения геологического времени. В конце концов они перестают действовать, и где‑нибудь образуются другие. Какие же события могут остановить процесс субдукции?

Чаще всего это столкновение между континентами после того, как океаническая кора, существовавшая между ними, оказывается израсходованной в процессе субдукции. Вспомним, что очень часто литосферные плиты состоят из континентальной и океанической коры. В то время как сама плита, может быть, и безразлична к природе своих пассажиров, этого нельзя сказать о зоне субдукции. Она просто не в состоянии заглотить континентальную кору с ее низкой плотностью. Поэтому, когда океанический бассейн в конце концов закрывается благодаря субдукции, два обломка континентальной коры просто сталкиваются и припаиваются друг к другу; субдукция прекращается. Упрощенный набросок такого процесса показан на рис. 5.5. Он не так уж прост, как можно подумать по приведенному описанию; в типичном случае столкновение между континентами сопровождается мощным вулканизмом, метаморфизмом и горообразованием и занимает очень много времени.

Пожалуй, самым выдающимся примером такого процесса, взятым из недавнего прошлого, является столкновение между Индией и Азией, более подробно описанное в главе 11, в результате которого возникли Гималаи. Когда‑то давным‑давно на том месте, где сейчас располагаются Гималаи, существовала зона субдукции, вдоль которой находящаяся южнее плита погружалась на север под Азию, а между Азией и континентом Индии, который располагался южнее, находился обширный океан. Породы Гималаев и Тибетского плато свидетельствуют, что эта ситуация продолжалась очень долгое время, в течение которого много мелких фрагментов плавучей континентальной коры, перемещенных вместе с этой океанической плитой, прибыло с юга к зоне субдукции и приклеилось к южному краю Азии. Но постепенно дно океана было поглощено зоной субдукции, в результате чего Индия притянулась к северу. Между 50 и 60 миллионами лет назад угол этого континента достиг зоны субдукции и стал прижиматься к Азии. Инерция его движения заставила северную часть Индии проскользнуть под южную часть азиатской плиты, образуя участок континентальной коры толщиной в два раза больше, чем где‑либо еще в мире. Осадки, смытые с окраин двух сближенных континентов еще до их столкновения, вулканические острова, существовавшие вдоль их краев, и породы самих континентов попали в ловушку гигантского столкновения, были смяты в систему параллельных складок, разбиты на блоки системой разломов и метаморфизованы. В результате образовалась самая высокая горная цепь и самое большое плоскогорье на Земле.

 

 

 

Рис. 5.5. Схематический разрез, показывающий, как процесс субдукции может закрыть океанский бассейн и привести к столкновению континенты, образуя огромные горные системы типа Гималаев.

 

Обширная горная страна Гималаев все еще считается границей плиты, потому что до сих пор существует относительное движение между Азией и Индией. Эта страна пока поднимается; там довольно часты землетрясения. Действительно, землетрясения, снимающие напряжения, возникающие в земной коре, происходят в наши дни уже вдали от зоны столкновения, особенно в Китае, как результат того факта, что части Азии были сжаты и повернуты к востоку в момент, когда обе плиты устремились друг на друга. Однако в конце концов, когда прекратится относительное движение между двумя ранее отделенными друг от друга континентами, Гималаи будут признаны неактивной шовной зоной, находящейся внутри континента. Но когда это произойдет, кое‑чему другому придется отодвинуться, чтобы дать пристанище новой области морского дна, образующейся вдоль океанического хребта, лежащего далеко к югу (рис. 5.2). Проведенные в последние годы исследования морского дна вблизи от Шри‑Ланки показывают, что южнее этого острова, возможно, образуется новая зона субдукции, которая разрешит геометрическую головоломку.

Столкновения континента с континентом, подобные тому, что произвели на свет Гималаи, видимо, происходят регулярно на протяжении геологической истории. Хотя созданные ими высокие горы давно разрушились, следы таких событий можно распознать в древних породах по тому факту, что они образуют характерные длинные полосы сильно метаморфизованных пород, имеющих приблизительно одинаковый возраст. Хорошим примером такой области является провинция Грэнвиль в восточной части Северной Америки (рис. 4.3), которая была, без сомнения, в глубокой древности очень похожа на нынешние Гималаи.

 

 








Дата добавления: 2015-05-08; просмотров: 2296;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.