Закалка.
Закалкой называется операция термической обработки, состоящая в нагреве до температур выше (Рис.56.) верхней критической точки Ас3 доэвтектоидной стали и выше нижней критической точки Ас1 заэвтектоидной стали и выдержки при данной температуре с последующим быстрым охлаждением (в воде, масле, водных растворах солей и пр.).
Закалкой можно считать такую термообработку, при которой сталь приобретает неравновесную структуру (сорбит, троостит, бейнит, мартенсит) что, прежде всего, выражается в повышении твердости стали.
Закалкой достигается повышение прочности конструкционных сталей и придание режущей способности инструментальной стали. Температура нагрева стали перед закалкой зависит в основном от химического состава стали. При закалке доэвтектоидных сталей нагрев следует вести до температуры, лежащей на 30-50 ºС выше точки Ас3. В этом случае сталь имеет структуру однородного аустенита, который при последующем охлаждении со скоростью, превышающей критическую скорость закалки, превращается в мартенсит. Такая закалка называется полной.
Максимальная скорость охлаждения, при которой аустенит превращается в мартенсит без структур перлитного типа, называется критической скоростью закалки.
Рис.56. Интервал закалочных температур углеродистой стали
При нагреве доэвтектоидной стали до температур, лежащих в интервале Ас1- Ас3, в структуре мартенсита сохраняется некоторое количество феррита, снижающего твердость закаленной стали. Такая закалка называется неполной. Для заэвтектоидной стали наилучшая температура закалки – на 29-30 ºС выше Ас1, т.е.неполная закалка. В этом случае сохранение цементита при нагреве и охлаждении будет способствовать повышению твердости, так как твердость цементита больше твердости мартенсита. Нагрев заэвтектоидной стали до температур выше Асm излишен, так как твердость получается меньшей, чем при закалки с температуры Ас1, за счет растворения цементита и увеличения количества остаточного аустенита. Кроме того, при охлаждении с более высоких температур могут возникнуть большие внутренние напряжения.
Скорость охлаждения оказывает решающее влияние на результаты закалки.
Для каждой стали существует критическая скорость закалки, чем ниже эта скорость, тем легче закалить сталь. Фактическая скорость охлаждения при закалке должна быть меньше критической, иначе мартенсит в структуре стали либо не образуется совсем, либо образуется частично, тогда структура стали будет состоять в основном из троостита или сорбита. Однако не следует охлаждать сталь со скоростью, значительно превышающей критическую. При таком охлаждении сталь будет иметь структуру мартенсита, но чрезмерно резкая закалка может привести к весьма значительным внутренним напряжениям и трещинам.
Различна скорость охлаждения изделий при закалке достигается за счет применения охлаждающих жидкостей: воды, масла, растворов солей в воде и др. При охлаждении в жидкости изделие отдает часть своей теплоты соприкасающейся с ним жидкости, превращающейся в пар. Теплота, расходуемая на образование пара, называется скрытой теплотой парообразования. Чем выше теплота парообразования, тем выше закаливающая способность жидкости, так как изделие, отдавая большое количество тепла на образование пара, будет быстрее охлаждаться.
Самая распространенная закалочная среда – вода. Ее охлаждающая способность зависит от температуры. Чем выше температура воды, тем меньше ее закалочная способность. Обычно при закалке применяется вода с температурой 20-30 ºС.
Так же в качестве закалочной жидкости используют 5-10-процентный раствор едкого натра или поваренной соли в воде. Вода, в которой растворены хлористый натрий или едкий натр, имеет более высокую скрытую теплоту парообразования. Частицы соли, соприкасаясь с раскаленным металлом, взрываются и разрушают паровую рубашку, тем самым, увеличивая закаливающую способность воды.
Широкое распространение в качестве охлаждающей среды получило минеральное масло, преимущественно индустриальное. Масло, подогретое до 50-60 ºС, обладает более высокой закаливающей способностью, чем холодное. Это объясняется тем, что при нагреве масло становится менее вязким, его паровая рубашка разрушается быстрее.
Закалочная способность масла при 550-650 ºС в 4 - 5 раз меньше, чем холодной воды, однако при 200-300 ºС масло охлаждает изделие в 10 раз медленнее, чем вода, поэтому при закалке изделий в масле значительно уменьшается опасность их коробления и появления трещин.
Виды закалки стали.
Выбор способа закалки зависит от, состава стали из которой изготовлена деталь, ее размеров и формы.
Закалка в одном охладители. (кривая охлаждения 1) (Рис.57.) деталь нагретую до закалочной температуры погружают в закалочную среду, где она остается до полного охлаждения. Данный вид закалки применяют для деталей простой формы из углеродистой и легированной стали. В качестве охлаждающей жидкости для углеродистых сталей применяют воду, легированные стали охлаждают в масле.
Рис.57.
Закалка в двух средах (кривая охлаждения 2) (Рис.57.) широко применяется для инструмента из высокоуглеродистой стали. Сущность способа состоит в то, что деталь вначале охлаждают в воде, до температуры немного выше Мн (температура начала мартенситного превращении), а затем переносят в масло или другую охлаждающую среду, где оставляют до полного охлаждения.
Ступенчатая закалка (кривая охлаждения 3) (Рис.57.) выполняется путем быстрого охлаждения деталей в соляной ванне температура которой немного выше температуры мартенситного превращения (240-250 ºС). Выдержка при этой температуре должна обеспечить выравнивание температур по всему сечению детали. Затем детали охлаждают до комнатной температуры в масле или на спокойном воздухе, устраняя тем самым термические внутренние напряжения.
Изотермическая закалка (кривая охлаждения 4) (Рис.57.) проводится так же, как ступенчатая, но с более длительной выдержкой при температуре горячей ванны – для обеспечения полного распада аустенита. В результате такой закалки сталь приобретает структуру игольчатого троостита, с твердостью НRС 45-55 и с сохранением небольшой пластичности. В основном изотермической закалке подвергают легированные стали. В качестве охлаждающей среды используют расплавленные соли: 55 % KNO3 + 45 % NaNO2 (температура плавления 137 ºС), и 55 % KNO3 + 45 % NaNO3 (температура плавления 218 ºС).
Светлая закалка стальных деталей производится в специально оборудованных печах с защитной атмосферой.
Так же для получения чистой и светлой поверхности применяют ступенчатую закалку с охлаждением в расплавленной едкой щелочи. Деталь нагревают в соляной ванне из хлористого натрия при температуре на 30-50 ºС выше точки Ас1 и охлаждают при температуре 180-200 ºС в ванне, состоящей из 75 % едкого калия и 25 % едкого натра с добавлением 6-8 % воды (от веса всей соли). Такая смесь имеет температуру плавления 145 ºС и благодаря наличию воды обладает очень высокой закаливающей способностью.
Закалка с самоотпуском. Детали выдерживают в охлаждающей среде не до полного охлаждения, а в определенный момент извлекают из нее с целью сохранения в сердцевине изделия некоторого количества тепла, за счет которого производится последующий отпуск. После достижения требуемой температуры отпуска за счет внутреннего тепла деталь окончательно охлаждают в закалочной жидкости. Закалка с самоотпуском применяется для различного инструмента, требующего высокой твердости на поверхности и сохранения вязкой сердцевины.
Отпуск стали.
Отпуском называется операция термической обработки, состоящая в нагреве закаленной стали до температуры ниже критической точки Ас1, выдержке при этой температуре и последующем медленном или быстром охлаждении.
Отпуск имеет целью устранение или уменьшение напряжений в стали, повышение вязкости и понижение твердости.
Отпуск является заключительной операцией термической обработки.
В зависимости от температуры нагрева различают низкий, средний и высокий отпуск.
Низкий отпуск характеризуется нагревом в интервале 80-200 ºС, выдержки при этой температуре и последующем охлаждении на воздухе. Этот отпуск снижает внутренние напряжение в стали при сохранении высокой твердости (58-63 HRC). Он применяется преимущественно для инструмента из углеродистой и низколегированной стали, а также для деталей, подвергаемых поверхностной закалке, цементации и нитроцементации, к которым предъявляются высокие требования по твердости и износостойкости.
Средний отпуск осуществляется при температурах 350-500 ºС. Целью этого отпуска является получение структуры троостита. Твердость стали заметно понижается (40-50 HRC), предел упругости достигает максимальной величины. Средний отпуск применяют для пружин, рессор, а также инструмента, который должен иметь значительную прочность и упругость при средней твердости.
Высокий отпуск производится при температурах 550-680 ºС.
Сталь при этом приобретает структуру сорбита. Твердость закаленной стали снижается до 250-350 НВ, прочность уменьшается в 1,5-2 раза, пластичность и вязкость увеличиваются в несколько раз, внутренние напряжения полностью снимаются. Закалка с высоким отпуском называется улучшением. Улучшенная сталь по сравнению с отожженной или нормализованной имеет более высокие показатели прочности, пластичности и вязкости.
Старение – это процесс изменения свойств сплавов без заметного изменения микроструктуры. В результате старения прочность и твердость повышаются, а пластичность и вязкость снижаются. Старение приводит к изменению размеров и короблению изделий. Если старение протекает при комнатной температуре, его называют естественным, если при повышенной температуре – искусственным. Известны два вида старения: термическое и деформационное. Термическое старение происходит в результате изменения растворимости углерода в - железе в зависимости от температуры. Деформационное строение протекает в сплаве, подвергнутом пластической деформации при температуре ниже температуры рекристаллизации. Процесс этого старения длится 15 суток и более при комнатной температуре и всего несколько минут при температурах 200-350 ºС.
Искусственное старение закаленных и отпущенных при низкой температуре изделий производится после предварительной механической обработки при 100-180 ºС с выдержкой в течении 18-35 часов и медленным охлаждением. Естественное старение осуществляется на открытом воздухе под навесом, где на изделия воздействуют температурные изменения, влажность и давление воздуха. Оно длится от 3 месяцев до 2 лет. Результатом естественного старения является снижение внутреннего напряжения, стабилизация размеров и геометрической формы изделия.
Дата добавления: 2015-04-21; просмотров: 3590;