Хранение информации
Хранение и накопление являются одними из основных действий, осуществляемых над информацией и главным средством обеспечения ее доступности в течение некоторого промежутка времени. В настоящее время определяющим направлением реализации этой операции является концепция базы данных, склада (хранилища) данных.
База данных может быть определена как совокупность взаимосвязанных данных, используемых несколькими пользователями и хранящихся с регулируемой избыточностью. Хранимые данные не зависят от программ пользователей, для модификации и внесения изменений применяется общий управляющий метод.
Банк данных — система, представляющая определенные услуги по хранению и поиску данных определенной группе пользователей по определенной тематике.
Система баз данных — совокупность управляющей системы, прикладного программного обеспечения, базы данных, операционной системы и технических средств, обеспечивающих информационное обслуживание пользователей.
Хранилище данных (ХД — используют также термины Data Warehouse, «склад данных», «информационное хранилище») — это база, хранящая данные, агрегированные по многим измерениям. Основные отличия ХД от БД: агрегирование данных; данные из ХД никогда не удаляются; пополнение ХД происходит на периодической основе; формирование новых агрегатов данных, зависящих от старых — автоматическое; доступ к ХД осуществляется на основе многомерного куба или гиперкуба.
Альтернативой хранилищу данных является концепция витрин данных (Data Mart). Витрины данных — множество тематических БД, содержащих информацию, относящуюся к отдельным информационным аспектам предметной области.
Еще одним важным направлением развития баз данных являются репозитарии. Репозитарий, в упрощенном виде, можно рассматривать просто как базу данных, предназначенную для хранения не пользовательских, а системных данных. Технология репозитариев проистекает из словарей данных, которые по мере обогащения новыми функциями и возможностями приобретали черты инструмента для управления метаданными.
Каждый из участников действия (пользователь, группа пользователей, «физическая память») имеет свое представление об информации.
По отношению к пользователям применяют трехуровневое представление для описания предметной области: концептуальное, логическое и внутреннее (физическое) (рис. 4.7).
Концептуальный уровень связан с частным представлением данных группы пользователей в виде внешней схемы, объединяемых общностью используемой информации. Каждый конкретный пользователь работает с частью БД и представляет ее в виде внешней модели. Этот уровень характеризуется разнообразием используемых моделей (модель «сущность—связь», ER-модель, модель Чена), бинарные и инфологические модели, семантические сети). На рис. 4.8 представлен фрагмент предметной базы данных «Сбыт» и одно из возможных его концептуальных представлений, которое отражает не только объекты и их свойства, но и взаимосвязи между ними.
Логический уровень является обобщенным представлением данных всех пользователей в абстрактной форме. Используются три вида моделей: иерархические, сетевые и реляционные.
Сетевая модель является моделью объектов-связей, допускающей только бинарные связи «многие к одному» и использует для описания модель ориентированных графов.
Иерархическая модель является разновидностью сетевой, являющейся совокупностью деревьев (лесом).
Рис. 4.7. Описание предметной области
Рис. 4.8. Фрагмент предметной базы данных «Сбыт» и одно из его возможных концептуальных представлений
Реляционная модель использует представление данных в виде таблиц (реляций), в ее основе лежит математическое понятие теоретико-множественного отношения, она базируется на реляционной алгебре и теории отношений.
Представление предметной базы данных «Сбыт» на логическом уровне для различных моделей показано на рис. 4.9.
Физический (внутренний) уровень связан со способом фактического хранения данных в физической памяти ЭВМ. Во многом определяется конкретным методом управления. Основными компонентами физического уровня являются хранимые записи, объединяемые в блоки; указатели, необходимые для поиска данных; данные переполнения; промежутки между блоками; служебная информация.
Рис. 4.9. Представление предметной базы данных «Сбыт» на логическом уровне для различных моделей
По наиболее характерным признакам БД можно классифицировать следующим образом:
по способу хранения информации:
· интегрированные;
· распределенные;
по типу пользователя:
· монопользовательские;
· многопользовательские;
по характеру использования данных:
· прикладные;
· предметные.
В настоящее время при проектировании БД используют два подхода. Первый из них основан на стабильности данных, что обеспечивает наибольшую гибкость и адаптируемость к используемым приложениям. Применение такого подхода целесообразно в тех случаях, когда не предъявляются жесткие требования к эффективности функционирования (объему памяти и продолжительности поиска), существует большое число разнообразных задач с изменяемыми и непредсказуемыми запросами.
Второй подход базируется на стабильности процедур запросов к БД и является предпочтительным при жестких требованиях к эффективности функционирования, особенно это касается быстродействия.
Другим важным аспектом проектирования БД является проблема интеграции и распределения данных. Господствовавшая до недавнего времени концепция интеграции данных при резком увеличении их объема, оказалась несостоятельной, Этотфакт, а также увеличение объемов памяти внешних запоминающих устройств при их удешевлении, широкое внедрение сетей передачи данных способствовало внедрению распределенных БД. Распределение данных по месту их использования может осуществляться различными способами:
1. Копируемые данные. Одинаковые копии данных хранятся в различных местах использования, так как это дешевле передачи данных. Модификация данных контролируется централизованно;
2. Подмножество данных. Группы данных, совместимые с исходной базой данных, хранятся отдельно для местной обработки;
3. Реорганизованные данные. Данные в системе интегрируются при передаче на более высокий уровень;
4. Секционированные данные. На различных объектах используются одинаковые структуры, но хранятся разные данные;
5. Данные с отдельной подсхемой. На различных объектах используются различные структуры данных, объединяемые в интегрированную систему;
6. Несовместимые данные. Независимые базы данных, спроектированные без координации, требующие объединения.
Важное влияние на процесс создания БД оказывает внутреннее содержание информации. Существует два направления:
· прикладные БД, ориентированные на конкретные приложения, например, может быть создана БД для учета и контроля поступления материалов;
· предметные БД, ориентированные на конкретный класс данных, например, предметная БД «Материалы», которая может быть использована для различных приложений.
Конкретная реализация системы баз данных с одной стороны определяется спецификой данных предметной области, отраженной в концептуальной модели, а с другой стороны типом конкретной СУБД (МБД), устанавливающей логическую и физическую организацию.
Для работы с БД используется специальный обобщенный инструментарий в виде СУБД (МБД), предназначенный для управления БД и обеспечения интерфейса пользователя.
Основные стандарты СУБД:
· независимость данных на концептуальном, логическом, физическом уровнях;
· универсальность (по отношению к концептуальному и логическому уровням, типу ЭВМ);
· совместимость, не избыточность;
· безопасность и целостность данных;
· актуальность и управляемость.
Существуют два основных направления реализации СУБД: программное и аппаратное.
Программная реализация (в дальнейшем СУБД) представляет собой набор программных модулей, работает под управлением конкретной ОС и выполняет следующие функции:
· описание данных на концептуальном и логическом уровнях;
· загрузку данных;
· хранение данных;
· поиск и ответ на запрос (транзакцию);
· внесение изменений;
· обеспечение безопасности и целостности. Обеспечивает пользователя следующими языковыми средствами:
· языком описания данных (ЯОД);
· языком манипулирования данными (ЯМД);
· прикладным (встроенным) языком данных (ПЯД, ВЯД).
Аппаратная реализация предусматривает использование так называемых машин баз данных (МВД). Их появление вызвано возросшими объемами информации и требованиями к скорости доступа. Слово «машина» в термине МБД означает вспомогательный периферийный процессор. Термин «компьютер БД» — автономный процессор баз данных или процессор, поддерживающий СУБД. Основные направления МБД:
· параллельная обработка;
· распределенная логика;
· ассоциативные ЗУ;
· конвейерные ЗУ;
· фильтры данных и др.
На рис. 4.10 представлена совокупность процедур проектирования БД, которые можно объединить в четыре этапа. На этапе формулирования и анализа требований устанавливаются цели организации, определяются требования к БД. Эти требования документируются в форме, доступной конечному пользователю и проектировщику БД. Обычно при этом используется методика интервьюирования персонала различных уровней управления.
Этап концептуального проектирования заключается в описании и синтезе информационных требований пользователей в первоначальный проект БД. Результатом этого этапа является высокоуровневое представление информационных требований пользователей на основе различных подходов.
Рис. 4.10. Совокупность процедур проектирования БД
В процессе логического проектирования высокоуровневое представление данных преобразуется в структуре используемой СУБД.Полученная логическая структура БД может быть оценена количественно с помощью различных характеристик (число обращений к логическим записям, объем данных в каждом приложении, общий объем данных и т.д.). На основе этих оценок логическая структура может быть усовершенствована с целью достижения большей эффективности.
На этапе физического проектирования решаются вопросы, связанные с производительностью системы, определяются структуры хранения данных и методы доступа.
Весь процесс проектирования БД является итеративным, при этом каждый этап рассматривается как совокупность итеративных процедур, в результате выполнения которых получают соответствующую модель.
Взаимодействие между этапами проектирования и словарной системой необходимо рассматривать отдельно. Процедуры проектирования могут использоваться независимо в случае отсутствия словарной системы. Сама словарная система может рассматриваться как элемент автоматизации проектирования.
Этап расчленения БД связан с разбиением ее на разделы и синтезом различных приложений на основе модели. Основными факторами, определяющими методику расчленения, помимо указанных на рис. 4.10 являются: размер каждого раздела (допустимые размеры); модели и частоты использования приложений; структурная совместимость; факторы производительности БД. Связь между разделом БД и приложениями характеризуется идентификатором типа приложения, идентификатором узла сети, частотой использования приложения и его моделью.
Модели приложений могут быть классифицированы следующим образом:
1. Приложения, использующие единственный файл;
2. Приложения, использующие несколько файлов, в том числе:
· допускающие независимую параллельную обработку;
· допускающие синхронизированную обработку. Сложность реализации этапа размещения БД определяется многовариантностью. Поэтому на практике рекомендуется в первую очередь рассмотреть возможность использования определенных допущений, упрощающих функции СУБД, например, допустимость временного рассогласования БД, осуществление процедуры обновления БД из одного узла и др. Такие допущения оказывают большое влияние на выбор СУБД и рассматриваемую фазу проектирования.
Средства проектирования и оценочные критерии используются на всех стадиях разработки. Любой метод проектирования (аналитический, эвристический, процедурный), реализованный в виде программы, становится инструментальным средством проектирования, практически не подверженным влиянию стиля проектирования.
В настоящее время неопределенность при выборе критериев является наиболее слабым местом в проектировании БД. Это связано с трудностью описания и идентификации бесконечного числа альтернативных решений. При этом следует иметь в виду, что существует много признаков оптимальности, являющихся неизмеримыми, им трудно дать количественную оценку или представить их в виде целевой функции. Поэтому оценочные критерии принято делить на количественные и качественные. Наиболее часто используемые критерии оценки БД, сгруппированные в такие категории, представлены ниже.
Количественные критерии: время, необходимое для ответа на запрос, стоимость модификации, стоимость памяти, время на создание, стоимость на реорганизацию.
Качественные критерии: гибкость, адаптивность, доступность для новых пользователей, совместимость с другими системами, возможность конвертирования в другую вычислительную среду, возможность восстановления, возможность распределения и расширения.
Трудность в оценке проектных решений связана также с различной чувствительностью и временем действия критериев. Например, критерий эффективности обычно является краткосрочным и чрезвычайно чувствительным к проводимыми изменениям, а такие понятия, как адаптируемость и конвертируемость, проявляются на длительных временных интервалах и менее чувствительны к воздействию внешней среды.
Предназначение склада данных — информационная поддержка принятия решений, а не оперативная обработка данных. Потому база данных и склад данных не являются одинаковыми понятиями. Архитектура ХД представлена на рис. 4.11.
Основные принципы организации хранилищ данных следующие [44,45].
Рис. 4.11. Архитектура ХД
1. Предметная ориентация. В оперативной базе данных обычно поддерживается несколько предметных областей, каждая из которых может послужить источником данных для ХД. Например, для магазина, торгующего видео- и музыкальной продукцией, интерес представляют следующие предметные области: клиенты, видеокассеты, CD-диски и аудиокассеты, сотрудники, поставщики. Явно прослеживается аналогия между предметными областями ХД и классами объектов в объектно-ориентированных базах данных. Это говорит о возможности применения методов проектирования, применяемых в объектно-ориентированных СУБД.
2. Средства интеграции. Приведение разных представлений одних и тех же сущностей к некоторому общему типу.
3. Постоянство данных. В ХД не поддерживаются операции модификации в смысле традиционных баз данных. В ХД поддерживается модель «массовых загрузок» данных, осуществляемых в заданные моменты времени по установленным правилам в отличие от традиционной модели индивидуальных модификаций.
4. Хронология данных. Благодаря средствам интеграции реализуется определенный хронологический временной аспект, присущий содержимому ХД.
Основные функции репозитариев:
· парадигма включения/выключения и некоторые формальные процедуры для объектов;
· поддержка множественных версий объектов и процедуры управления конфигурациями для объектов;
· оповещение инструментальных и рабочих систем об интересующих их событиях;
· управление контекстом и разные способы обзора объектов репозитария;
· определение потоков работ.
Рассмотрим кратко основные направления научных исследований в области баз данных:
· развитие теории реляционных баз данных;
· моделирование данных и разработка конкретных моделей разнообразного назначения;
· отображение моделей данных, направленных на создание методов их преобразования и конструирования коммутативных отображений, разработку архитектурных аспектов отображения моделей данных и спецификаций определения отображений для конкретных моделей данных;
· создание СУБД с мультимодельным внешним уровнем, обеспечивающих возможности отображения широко распространенных моделей;
· разработка, выбор и оценка методов доступа;
· создание самоописываемых баз данных, позволяющих применять единые методы доступа для данных и метаданных;
· управление конкурентным доступом;
· развитие системы программирования баз данных и знаний, которые обеспечивали бы единую эффективную среду как для разработки приложений, так и для управления данными;
· совершенствование машины баз данных;
· разработка дедуктивных баз данных, основанных на применении аппарата математической логики и средств логического программирования, а также пространственно-временных баз данных;
· интеграция неоднородных информационных ресурсов.
Дата добавления: 2015-04-19; просмотров: 2674;