ЭЛЕКТРОПРИВОД

Современный автоматизированный электропривод – это электромеханическая система для приведения в движение исполнительных механизмов рабочих машин и управления этим движением в целях осуществления технологического процесса.

Все мероприятия по созданию современных механизмов в той или иной степени связаны с развитием автоматизированного электропривода. Широкое внедрение электропривода коренным образом изменяет условия производства, повышая производительность с одновременным улучшением качества продукции и снижением её себестоимости. В связи с этим важное значение имеет правильное проектирование электропривода. Только правильно спроектированный электропривод может удовлетворить всем предъявляемым к нему требованиям со стороны приводимого им в движение производственного механизма.

Задачей настоящего пособия является оказание помощи бакалаврам при самостоятельной работе с учебной и технической литературой и в получении практических навыков по решению основных вопросов проектирования электропривода: приведение моментов, моментов сопротивления и инерционных масс, построение нагрузочных и диаграмм и тахограмм, расчёт пусковых и тормозных сопротивлений, выбор электрических двигателей, а так же разработка схем автоматического управления электродвигателями.

Для закрепления полученных знаний в пособии содержаться практические задания, которые обучающиеся должны выполнять во время освоения материала.

Выбор варианта задания и числовых значений параметров определяется по двум последним цифрам шифра зачетной книжки. Вариант задания выбирается по последней цифре шифра.

 

 

1. ПРИВЕДЕНИЕ МОМЕНТОВ СОПРОТИВЛЕНИЯ, ИНЕРЦИОННЫХ МАСС И
ПАРАМЕТРОВ ДВИЖЕНИЯ К ОДНОЙ ОСИ

1.1 Общие понятия и основные формулы

При исследованиях и расчётах обычно применяют обобщённые математические модели электропривода [1]. Такие модели создаются на основе использования приведённых механических систем. Для получения приведённой механической системы движущие моменты, моменты сопротивления и инерционные массы должны представлять собой единую механическую систему, движущуюся с одной скоростью (обычно со скоростью вала двигателя). При этом необходимо выполнить пересчёт указанных величин таким образом, чтобы сохранить кинематические и динамические свойства исходной системы.

Рассмотрим процесс приведения моментов (сил), без учета потерь в передаточном механизме. На основании закона сохранения энергии можно записать равенство мощностей на валах двигателя и исполнительного органа рабочей машины:

где Мпр – статический момент, приведённый к валу приведения;

ММ – статический момент сопротивления механизма на его валу;

ΩМ и Ωпр – угловые скорости вала механизма и вала приведения;

– передаточное число.

При преобразовании поступательного движения во вращательное:

,

где FМ – сила, действующая на механизм;

νМ – скорость перемещения механизма;

– радиус приведения.

В реальных механических передачах происходит потеря мощности, поэтому при приведении усилий необходимо учитывать КПД передачи. При этом большую роль играет характер нагрузки и режим работы двигателя. Формулы для приведения моментов с учётом КПД приведены в таблице 1.1.


Таблица 1.1- Выражения для приведения усилий с учётом КПД

Характер нагрузки Режим работы Реактивная Активная
Двигательный
Тормозной - ;

 

Приведение масс движущихся поступательно ко вращательному движению, осуществляется на основе равенства кинематической энергии в приведённой и исходной системах:

где Jпр – приведенный момент инерции;

m – масса поступательно-движущегося элемента.

Аналогично для вращательного движения:

где JM –момент инерции механизма.

Суммарный момент инерции находится в виде суммы моментов инерций всех элементов, приведенных к одному валу. Как правило, при расчетах известны только моменты инерции основных элементов. Для учета оставшихся неучтенных масс момент инерции двигателя умножают на коэффициент, учитывающий все неучтённые массы в механической части электропривода δ, обычно его принимают в диапазоне 1,1÷1,2. Выражение для нахождения суммарного момента имеет следующий вид:


Таблица 1.2 - Основные формулы приведения

Момент на валу без учета потерь
Момент на валу с учетом потерь
, ,
Момент инерции
Угол поворота, угловая скорость и ускорение
, , , ,

 








Дата добавления: 2015-04-19; просмотров: 840;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.