Квантовая статистика. Фазовое пространство. Функция распределения
Квантовая статистика – раздел статистической физики, исследующий системы, которые состоят из огромного числа частиц, подчиняющихся законам квантовой механики.
Рассмотрим систему из N частиц. Свяжем с ней многомерное пространство всех координат и импульсов частиц системы. Состояние системы определяется заданием переменных 6N, так как состояние каждой частицы определяется тройкой координат x, y, z и тройкой проекций импульса рx, py, pz. Поэтому размерность многомерного пространства равно 6N. Это пространство называется фазовым пространством. Каждому микросостоянию системы в классическом случае отвечает точка в фазовом пространстве. При квазиклассическом описании движения системы на каждое квантовое состояние системы приходится в этом пространстве элементарный объем .
При взаимодействии с окружающей средой состояние системы меняется. Вероятность dР некоторого состояния системы (p, q) можно представить с помощью функции распределения f (p,q):
(24.1.1)
По определению функции распределения
,
где интегрирование производится по всему фазовому пространству.
При известной функции распределения f (p,q) можно определить макроскопические параметры системы. Любой макроскопический параметр L в смысле статистической физики является средним по микросостояниям
. (24.1.2)
Явное выражение функции распределения для системы, находящейся в тепловом контакте с большим тепловым резервуаром было получено Гиббсом. Оно называется каноническим распределением Гиббса и имеет вид
,
где A – нормировочная постоянная, n – совокупность квантовых чисел, определяющих данное состояние.
Дата добавления: 2015-04-19; просмотров: 753;