Постулаты Бора. Опыты Франка и Герца.

Первая попытка создать новую – квантовую – теорию ядра была осуществлена Н. Бором. Он поставил цель связать в единое целое эмпирические закономерности линейчатых спектров, ядерную модель атома Резерфорда и квантовый характер излучения и поглощения света. В основу новой теории Бор положил два постулата.

Первый постулат Бора (постулат стационарных состояний). В атоме существуют стационарные (не изменяющиеся со временем) состояния, в которых он не излучает энергии. Стационарным состояниям атома соответствуют стационарные круговые орбиты, по которым движутся электроны. Движение электронов по стационарным орбитам не сопровождается излучением электромагнитных волн.

В стационарном состоянии атома электрон имеет дискретные значения момента импульса, удовлетворяющие условию

, (19-4)

где – масса электрона, v – его скорость по n-й орбите радиуса .

Второй постулат Бора (правило частот). При переходе электрона с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией

, (19-5)

где и – соответственно энергии стационарных состояний атома до и после излучения (поглощения). Набор возможных дискретных частот квантовых переходов и определяет линейчатый спектр атома.

Существование дискретных энергетических уровней атома подтверждается опытами Франка и Герца. Схема их установки приведена на рис. 19.1 В трубке, заполненной парами ртути под небольшим давлением (~1 мм рт. ст.), имелись три электрода: катод К, сетка С и анод А. Термоэлектроны, вылетевшие из катода, ускорялись разностью потенциалов U, приложенной между катодом и сеткой. Между сеткой и анодом создавалось слабое электрическое поле (разность потенциалов порядка 0,5 В), тормозившее движение электронов к аноду. В опыте исследовалась зависимость силы тока I в цепи анода от напряжения U между катодом и сеткой. Характерная для таких опытов вольтамперная характеристика приведена на рис.19.2.

Ход кривой можно объяснить следующим образом. При столкновении электрона с атомами ртути возможно взаимодействие двух типов: 1) упругое столкновение, в результате которого энергия электронов практически не изменяется, изменяется только направление движения; 2) неупругое столкновение электрона с атомом ртути. При этом энергия электронов уменьшается, за счет передачи ее атому ртути.

В соответствии с постулатами Бора атом ртути может поглотить энергию в виде порции и перейти в возбужденное состояние на выше расположенный энергетический уровень. Первому возбужденному состоянию атома ртути соответст­вует энергия 4,9 эВ. При U < 4,9 В электроны испытывают только упругое взаимодействие с атомами ртути и, поэтому, с увеличением напряжения анодный ток возрастает.

При достижении U = 4,9 В энергия электронов сравнивается с энергией первого возбужденного уровня атома ртути. Происходят неупругие столкновения электронов с атомами ртути, которые получают порцию энергии = 4,9 эВ и переходят в возбужденное состояние. Электрон, потерявший энергию, не может преодолеть задерживающий потенциал. Поэтому при U = 4,9 В происходит уменьшение анодного тока. Аналогичное явление наблюдается при U = 2×4,9 В, U = 3×4,9 В и т.д., когда электроны могут испытывать два, три и т.д. неупругих столкновений с атомами ртути. Потеряв всю (или почти всю) энергию, электрон не сможет достичь анода, задерживающее поле отбросит его к сетке. В результате наблюдается падение тока при этих напряжениях и общий пилообразный ход вольтамперной характеристики.

Атомы паров ртути, получив энергию от электронов, переходят в возбужденное состояние, из которого спустя 10–8 с самопроизвольно возвращаются в основное состояние. При этом должен излучается фотон с длинной волны l»255 нм. В опыте действительно обнаруживается одна ультрафиолетовая линия с такой длиной волны. Таким образом, опыты Франка и Герца экспериментально подтверждают постулаты Бора.

Теория водородоподобного атома по Бору. Постулаты Бора позволяют рассчитать спектр атома водорода и водородоподобных ионов, состоящих из ядра Ze и одного электрона, и теоретически вычислить постоянную Ридберга.

Рассмотрим движение электрона в поле атомного ядра. Уравнение движения электрона имеет вид

. (19-6)

Исключив v из уравнений (19-4) и (19-6), получим выражение для радиусов допустимых орбит

. (19-7)


Для атома водорода (Z=1) радиус первой орбиты называется боровским радиусом. Его значение равно

. (19-8)

Полная энергия электрона в водородоподобном атоме складывается из его кинетической энергии и потенциальной энергии взаимодействия с ядром

(при ее получении использована формула (19-6)). Учитывая квантование радиусов (19-7), получим, что энергия электрона принимает дискретные значения

. (19-9)

Согласно второму постулату Бора при переходе атома водорода из состояния n в состояние m излучается фотон

,

откуда частота излучения

.

Таким образом, теория Бора приводит к обобщенной формуле Бальмера, причем для постоянной Ридберга получилось значение . При подстановке в это выражение значений универсальных постоянных получается величина, превосходно согласующаяся с экспериментальным значением постоянной Ридберга.

Теория Бора была крупным шагом в развитии теории атома. Она отчетливо показала, что процессы в микромире описываются не классическими, а иными, квантовыми законами.

 

 








Дата добавления: 2015-04-15; просмотров: 3411;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.