Какие задачи решают нейросети
Нейросети наиболее приспособлены к решению широкого круга задач, так или иначе связанных с обработкой образов. Вот список типичных постановок задач для нейросетей:
n Аппроксимация функций по набору точек (регрессия)
n Классификация данных по заданному набору классов
n Кластеризация данных с выявлением заранее неизвестных классов-прототипов
n Сжатие информации
n Восстановление утраченных данных
n Ассоциативная память
n Оптимизация, оптимальное управление
Этот список можно было бы продолжить и дальше. Заметим, однако, что между всеми этими внешне различными постановками задач существует глубокое родство. За ними просматривается некий единый прототип, позволяющий при известной доле воображения сводить их друг к другу.
Возьмем, например, задачу аппроксимации функции по набору точек. Это типичный пример некорректной задачи, т.е. задачи, не имеющей единственного решения. Чтобы добиться единственности, такие задачи надо регуляризировать - дополнить требованием минимизации некоторого регуляризирующего функционала. Минимизация такого функционала и является целью обучения нейросети. Задачи оптимизации также сводятся к минимизации целевых функций при заданном наборе ограничений. С другой стороны, классификация - это ни что иное, как аппроксимация функции с дискретными значениями (идентификаторами классов), хотя ее можно рассматривать и как частный случай заполнения пропусков в базах данных, в данном случае - в колонке идентификаторов класса. Задача восстановления утраченных данных, в свою очередь - это ассоциативная память, восстанавливающая прообраз по его части. Такими прообразами в задаче кластеризации выступают центры кластеров. Наконец, если информацию удается восстановить по какой-нибудь ее части, значит, мы добились сжатия этой информации, и т.д.
Многие представители разных наук, занимающихся перечисленными выше задачами и уже накопившими изрядный опыт их решения, видят в нейросетях лишь перепев уже известных им мотивов. Каждый полагает, что перевод его методов на новый язык нейросетевых схем ничего принципиально нового не дает. Статистики говорят, что нейросети - это всего лишь частный способ статистической обработки данных, специалисты по оптимизации - что методы обучения нейросетей давно известны в их области, теория аппроксимации функций рассматривает нейросети наряду с другими методами многомерной аппроксимации. Нам же представляется, что именно синтез различных методов и идей в едином нейросетевом подходе и является неоценимым достоинством нейрокомпьютинга. Нейрокомпьютинг предоставляет единую методологию решения очень широкого круга практически интересных задач. Это, как правило, ускоряет и удешевляет разработку приложений. Причем, что обычно забывают за неразвитостью соответствующего hardware, но что, видимо, в конце концов сыграет решающую роль, нейросетевые алгоритмы решения всех перечисленных выше задач заведомо параллельны. Следовательно, все, что может быть решено - может быть при желании решено гораздо быстрее и дешевле.
Дата добавления: 2015-04-10; просмотров: 1311;