Пороговые концепции чувствительности
Изложенная в предыдущем разделе трактовка понятия «порог» является классической и воплощает фехнеровское понимание порога как некоторой реально существующей границы, разделяющей весь континуум стимулов на ощущаемые и неощущаемые. При этом, чтобы объяснить плавный, а не скачкообразный ход психометрической кривой, Фехнер вынужден был апеллировать к флуктуациям величины порога во времени. Такая аргументация вызывала ряд возражений у его оппонентов, полагавших, что порога как такового не существует, а та величина, которую мы получаем в результате применения описанных выше процедур, представляет собой не более как условное рабочее понятие, допустимое для использования в целях удобства в прикладных исследованиях. Несмотря на подобную критику, понятие порога продолжает широко использоваться в науке и на практике, наполняясь новым смыслом.
Наиболее ярким представителем пороговых концепций чувствительности является нейроквантовая теория, связанная с именами Боринга (1926), Бекеши (1930) и Стивенса (1941). В теории постулируется существование «нервных квантов» как неких гипотетических функциональных элементов нервной системы, обеспечивающих обработку и передачу информации (заметим, что это допущение является достаточно обоснованным). Каждый нервный квант активируется только в том случае, если его возбуждение достигает некоторой критической величины – «порога». Следствием этого является то, что психометрические функции представляют прямолинейные отрезки, а не S-образные кривые. Такие прямолинейные психометрические функции действительно были получены в ряде работ. Однако они представляли собой скорее исключение из правила, поскольку их получение было связано с использованием в эксперименте ряда существенных ограничений.
Близким к фехнеровскому пониманию порога является трактовка порога в высокопороговой теории Блэквелла (1953), согласно которой порог – это фиксированная критическая величина стимула, по достижении которой он становится ощущаемым. Отличие от Фехнера состоит в том, что в этой теории допускается, что в ситуации, когда в текущей пробе стимул не достигает порогового значения, испытуемый начинает пытаться угадать, был стимул или нет. Тем самым порождается возможность появления ответов типа «ложная тревога» (появление ответов «Стимул был» в случае отсутствия предъявления стимула в пробе – так называемая «пустая проба»). Чтобы устранить влияние на результаты случайных угадываний, Блэквеллом была введена широко известная формула поправки на случайный успех.
В качестве других вариантов пороговых концепций следует упомянуть теорию двух состояний Люса (1963), рассмотрение которой выходит за рамки задач данной работы.
Дата добавления: 2015-03-09; просмотров: 538;