Прочие органические

вещества - около 2 %

Минеральные вещества - около 1 %

Белки плазмы крови делятся на две фракции: альбумины и глобулины. Соотношение между альбуминами и глобулинами носит название «альбумино-глобулиновый коэффициент» и равно 1,5 – 2. Выполнение физических нагрузок сопровождается вначале увеличением этого коэффициента, а при очень продолжительной работе он снижается.

Альбумины – низкомолекулярные белки с молекулярной массой около 70 тыс. Да. Они выполняют две основные функции.

Во-первых, благодаря хорошей растворимости в воде эти белки выполняют транспортную функцию, перенося с током крови различные нерастворимые в воде вещества (например, жиры, жирные кислоты, некоторые гормоны и др.).

Во-вторых, вследствие высокой гидрофильности альбумины имеют значительную гидратную (водную) оболочку и поэтому задерживают воду в кровяном русле. Задержка воды в кровяном русле необходима в связи с тем, что содержание воды в плазме крови выше, чем в окружающих тканях, и вода в силу диффузии стремится выйти из кровеносных сосудов в ткани. Поэтому при значительном снижении альбуминов в крови (при голодании, при потере белков с мочой при заболеваниях почек) возникают отёки.

Глобулины – это высокомолекулярные белки с молекулярной массой около 300 тыс. Да. Подобно альбуминам глобулины также выполняют транспортную функцию и способствуют задержке воды в кровяном русле, но в этом они существенно уступают альбуминам. Однако у глобулинов имеются и очень важные функции. Так, некоторые глобулины являются ферментами и ускоряют химические реакции, протекающие непосредственно в кровяном русле. Еще одна функция глобулинов заключается в их участии в свертывании крови и в обеспечении иммунитета (защитная функция).

Бóльшая часть белков плазмы синтезируется в печени.

Прочие органические вещества (кроме белков) обычно делятся на две группы: азотистые и безазотистые.

Азотистые соединения - это промежуточные и конечные продукты обмена белков и нуклеиновых кислот. Из промежуточных продуктов белкового обмена в плазме крови имеются низкомолекулярные пептиды, аминокислоты, креатин. Конечные продукты метаболизма белков это прежде всего мочевина (её концентрация в плазме крови довольно высокая – 3,3-6,6 ммоль/л), билирубин (конечный продукт распада гема) и креатинин (конечный продукт распада креатинфосфата).

Из промежуточных продуктов обмена нуклеиновых кислот в плазме крови можно обнаружить нуклеотиды, нуклеозиды, азотистые основания. Конечным продуктом распада нуклеиновых кислот является мочевая кислота, которая в небольшой концентрация всегда содержится в крови.

Для оценки содержания в крови небелковых азотистых соединений часто используется показатель «небелковый азот». Небелковый азот включает азот низкомолекулярных (небелковых) соединений, главным образом перечисленных выше, которые остаются в плазме или сыворотке крови после удаления белков. Поэтому этот показатель также называют «остаточным азотом». Повышение в крови остаточного азота наблюдается при заболеваниях почек, а также при длительной мышечной работе.

К безазотистым веществам плазмы крови относятся углеводыи липиды, а также промежуточные продукты их метаболизма.

Главным углеводом плазмы является глюкоза. Её концентрация у здорового человека в покое и состоянии «натощак» колеблется в узком диапазоне от 3,9 до 6,1 ммоль/л (или 70-110 мг%). Поступает глюкоза в кровь в результате всасывания из кишечника при переваривании пищевых углеводов, а также при мобилизации гликогена печени. Кроме глюкозы в плазме также содержатся в небольших количествах другие моносахариды – фруктоза, галактоза, рибоза, дезоксирибоза и др. Промежуточные продукты углеводного обмена в плазме представлены пировиноградной и молочной кислотами. В покое содержание молочной кислоты (лактата) низкое – 1-2 ммоль/л. Под влиянием физических нагрузок и особенно интенсивных концентрация лактата в крови резко возрастает (даже в десятки раз !).

Липиды представлены в плазме крови жиром, жирными кислотами, фосфолипидами и холестерином. Вследствие нерастворимости в воде все липиды связаны с белками плазмы: жирные кислоты с альбуминами, жир, фосфолипиды и холестерин с глобулинами. Комплексы липидов и белков называются липопротеиды. Из промежуточных продуктов жирового обмена в плазме всегда имеются кетоновые тела.

Минеральные вещества находятся в плазме крови в виде катионов (Na+, K+, Ca2+, Mg2+ и др.) и анионов (Сl-, HCO3-, H2PO4-, HPO42-, SO42_, J- и др.). Больше всего в плазме содержится натрия, калия, хлоридов, бикарбонатов. Отклонения в минеральном составе плазмы крови могут наблюдаться при различных заболеваниях и при значительных потерях воды за счет потоотделения при выполнении физической работы.

Содержание основных компонентов крови представлено в табл. 5.

Таблица 5. Основные компоненты крови

Компонент Концентрация в тра- диционных единицах Концентрация в единицах СИ
Б е л к и
Общий белок 6-8 % 60-80 г/л
Альбумины 3,5- 4,5 % 35-45 г/л
Глобулины 2,5 - 3,5 % 25-35 г/л
Гемоглобину мужчин у женщин 13,5-18 % 12-16 % 2,1-2,8 ммол/л 1,9-2,5 ммоль/л
Фибриноген 200-450 мг% 2-4,5 г/л
Небелковые азотистые вещества
Остаточный азот 20-35 мг% 14-25 ммоль/л
Мочевина 20-40 мг% 3,3-6,6 ммоль/л
Креатин 0,2-1 мг% 15-75 мкмоль/л
Креатинин 0,5-1,2 мг% 44-106 мкмоль/л
Мочевая кислота 2-7 мг% 0,12-0,42 ммоль/л
Билирубин 0,5-1 мг% 8,5-17 мкмоль/л
Безазотистые вещества
Глюкоза (натощак) 70-110 мг% 3,9-6,1 ммоль/л
Фруктоза 0,1-0,5 мг% 5,5-28 мкмоль/л
Лактат артериальная кровь венозная кровь 3-7 мг% 5-20 мг% 0,33-0,78 ммоль/л 0,55-2,2 ммоль/л
Кетоновые тела 0,5-2,5 мг% 5-25 мг/л
Липиды общие 350-800 мг% 3,5-8 г/л
Триглицериды 50-150 мг% 0,5-1,5 г/л
Холестерин 150-300 мг% 4-7,8 ммоль/л
Минеральные вещества
Натрий плазма эритроциты 290-350 мг% 31-50 мг% 125-150 ммоль/л 13,4-21,7 ммоль/л
Калийплазма эритроциты 15-20 мг% 310-370 мг% 3,8-5,1 ммоль/л 79,3-99,7 ммоль/л
Хлориды 340-370 мг% 96-104 ммоль/л
Кальций 9-11 мг% 2,2-2,7 ммоль/л
       

12.4. Красные клетки (эритроциты).

Эритроциты составляют основную массу клеток крови. В 1 мм3 (мкл[1]) крови обычно содержится 4-5 млн. красных клеток. Образуются эритроциты в красном костном мозге, функционируют в кровяном русле и разрушаются, главным образом, в селезенке и в печени. Жизненный цикл этих клеток составляет 110-120 дней.

Эритроциты представляют собой двояковогнутые клетки, лишенные ядер, рибосом и митохондрий. В связи с этим в них не происходят такие процессы как синтез белка и тканевое дыхание. Основным источником энергии для эритроцитов является анаэробный распад глюкозы (гликолиз).

Основным компонентом красных клеток является белок гемоглобин. На его долю приходится 30 % от массы эритроцита или 90 % от сухого остатка этих клеток.

 
 

По своему строению гемоглобин является хромопротеидом. Его молекула обладает четвертичной структурой и состоит из четырех субъединиц. Каждая субъединица содержит один полипептид и один гем. Субъединицы отличаются друг от друга только строением полипептидов. Гем представляет собою сложную циклическую структуру из четырех пиррольных колец, содержащую в центре атом двухвалентного железа(Fe2+):

 

Основная функция эритроцитов– дыхательная. С участием эритроцитов осуществляется перенос кислорода от легких к тканям и углекислого газа от тканей к легким.

В капиллярах легких парциальное давление кислорода около 100 мм рт. ст. (парциальное давление это часть общего давления смеси газов, приходящаяся на отдельный газ из этой смеси. Например, при атмосферном давлении 760 мм рт. ст. на долю кислорода приходится 152 мм рт. ст., т.е. 1/5 часть, так как в воздухе обычно содержится 20 % кислорода). При таком давлении практически весь гемоглобин связывается с кислородом:

Hb + O2 ¾® HbO2

Гемоглобин Оксигемоглобин

Присоединяется кислород непосредственно к атому железа, входящему в состав гема, причем взаимодействовать с кислородом может только двухвалентное (восстановленное) железо. Поэтому различные окислители (например, нитраты, нитриты и т.п.), превращая железо из двухвалентного в трехвалентное (окисленное), нарушают дыхательную функцию крови.

Образовавшийся комплекс гемоглобина с кислородом - оксигемоглобинс током крови переносится в различные органы. Вследствие потребления кислорода тканями парциальное давление его здесь намного меньше, чем в легких. При низком парциальном давлении происходит диссоциация оксигемоглобина:

HbO2 ¾® Hb + O2

Степень распада оксигемоглобина зависит от величины парциального давления кислорода: чем меньше парциальное давление, тем больше отщепляется от оксигемоглобина кислорода. Например, в мышцах в состоянии покоя парциальное давление кислорода примерно 45 мм рт. ст. При таком давлении диссоциации подвергается только около 25 % оксигемо-

глобина. При работе умеренной мощности парциальное давление кислорода в мышцах примерно 35 мм рт. ст. и распаду подвергается уже около 50 % оксигемоглобина. При выполнении интенсивных нагрузок парциальное давление кислорода в мышцах снижается до 15-20 мм рт. ст., что вызывает более глубокую диссоциацию оксигемоглобина (на 75 % и более). Такой характер зависимости диссоциации оксигемоглобина от парциального давления кислорода позволяет значительно увеличить снабжение мышц кислородом при выполнении физической работы.

Усиление диссоциации оксигемоглобина также наблюдается при повышении температуры тела и увеличении кислотности крови (например, при поступлении в кровь больших количеств молочной кислоты при интенсивной мышечной работе), что тоже способствует лучшему снабжению тканей кислородом.

В целом за сутки человек, не выполняющий физической работы, использует 400-500 л кислорода. При высокой двигательной активности потребление кислорода значительно возрастает.

Транспорт кровью углекислого газа осуществляется из тканей всех органов, где происходит его образование в процессе катаболизма, в легкие, из которых он выделяется во внешнюю среду.

Бóльшая часть углекислого газа переносится кровью в форме солей - бикарбонатов калия и натрия. Превращение CO2 в бикарбонаты происходит в эритроцитах с участием гемоглобина. В эритроцитах накапливаются бикарбонаты калия (KHCO3), а в плазме крови - бикарбонаты натрия (NaHCO3). С током крови образовавшиеся бикарбонаты поступают в легкие и превращаются там снова в углекислый газ, который удаляется из легких с выдыхаемым воздухом. Это превращение происходит также в эритроцитах, но уже с участием оксигемоглобина, возникающего в капиллярах легких за счет присоединения кислорода к гемоглобину (см. выше).

Биологический смысл такого механизма переноса кровью углекислого газа заключается в том, что бикарбонаты калия и натрия обладают высокой растворимостью в воде, и поэтому в эритроцитах и в плазме они могут находиться в значительно бóльших количествах по сравнению с углекислым газом.

Небольшая часть CO2 может переноситься кровью в физически растворенном виде, а также в комплексе с гемоглобином, называемым карбгемоглобином.

В состоянии покоя в сутки образуется и выделяется из организма 350-450 л CO2. Выполнение физических нагрузок приводит к увеличению образования и выделения углекислого газа.

12.5. Белые клетки(лейкоциты).

В отличие от красных клеток лейкоциты являются полноценными клетками с большим ядром и митохондриями, и поэтому в них протекают такие важнейшие биохимические процессы как синтез белков и тканевое дыхание.

В состоянии покоя у здорового человека в 1 мм3 крови содержится 6-8 тыс. лейкоцитов. При заболеваниях количество белых клеток в крови может как уменьшаться (лейкопения), так и увеличиваться (лейкоцитоз). Лейкоцитоз может наблюдаться и у здоровых людей, например, после приема пищи или при выполнении мышечной работы (миогенный лейкоцитоз). При миогенном лейкоцитозе количество лейкоцитов в крови может повыситься до 15-20 тыс./мм3 и более.

Различают три вида лейкоцитов: лимфоциты (25-26 %), моноциты (6-7 %) и гранулоциты ( 67-70 %).

Лимфоциты образуются в лимфатических узлах и селезенке, а моноциты и гранулоциты - в красном костном мозге.

Лейкоциты выполняют защитную функцию, участвуя в обеспечении иммунитета.

В самом общем виде иммунитет - это защита организма от всего «чужого». Под «чужим» подразумеваются различные чужеродные высокомолекулярные вещества, обладающие специфичностью и уникальностью своего строения и отличающиеся вследствие этого от собственных молекул организма.

В настоящее время выделяют две формы иммунитета: специфический и неспецифический. Под специфическим обычно подразумевается собственно иммунитет, а неспецифический иммунитет - это различные факторы неспецифической защиты организма.

Система специфического иммунитета включает тимус (вилочковая железа), селезенку, лимфатические узлы, лимфоидные скопления (в носоглотке, миндалинах, аппендиксе и т. п.) и лимфоциты. Основу этой системы составляют лимфоциты.

Любое чужеродное вещество, на которое способна реагировать иммунная система организма, обозначается термином антиген. Антигенными свойствами обладают все «чужие» белки, нуклеиновые кислоты, многие полисахариды и сложные липиды. Антигенами могут быть также бактериальные токсины и целые клетки микроорганизмов, точнее макромолекулы, входящие в их состав. Кроме этого, антигенную активность могут проявлять и низкомолекулярные соединения, такие как стероиды, некоторые лекарства при условии их предварительного связывания с белком-носителем, например, альбумином плазмы крови. (На этом основано обнаружение иммунохимичекским методом некоторых допинговых препаратов при проведении допинг-контроля).

Поступивший в кровяное русло антиген распознается особыми лейкоцитами - Т-лимфоцитами, которые затем стимулируют превращение другого вида лейкоцитов - В-лимфоцитов в плазматические клетки, которые далее в селезенке, лимфоузлах и костном мозге синтезируют особые белки - антитела или иммуноглобулины. Чем крупнее молекула антигена, тем больше образуется различных антител в ответ на его поступление в организм. У каждого антитела имеются два связывающих участка для взаимодействия со строго определенным антигеном. Таким образом, каждый антиген вызывает синтез строго специфических антител.

Образовавшиеся антитела поступают в плазму крови и связываются там с молекулой антигена. Взаимодействие антител с антигеном осуществляется путем образования между ними нековалентных связей. Это взаимодействие аналогично образованию фермент-субстратного комплекса при ферментативном катализе, причем связывающий участок антитела соответствует активному центру фермента. Поскольку большинство антигенов являются высокомолекулярными соединениями, то к антигену одновременно присоединяется много антител.

Образовавшийся комплекс антиген-антитело далее подвергается фагоцитозу(см. ниже). Если антигеном является чужеродная клетка, то комплекс антиген-антитело подвергается воздействию ферментов плазмы крови под общим названием система комплемента. Эта сложная ферментативная система в конечном итоге вызывает лизис чужеродной клетки, т.е. её разрушение. Образовавшиеся продукты лизиса далее также подвергаются фагоцитозу.

Поскольку в ответ на поступления антигена антитела образуются в избыточных количествах, их значительная часть остается на длительное время в плазме крови, во фракции g-глобулинов. У здорового человека в крови содержится огромное количество различных антител, образовавшихся вследствие контактов с очень многими чужеродными веществами и микроорганизмами. Наличие в крови готовых антител позволяет организму быстро обезвреживать вновь поступающие в кровь антигены. На этом явлении основано проведение профилактических прививок.

Другие формы лейкоцитов - моноциты и гранулоциты участвуют в фагоцитозе. Фагоцитоз можно рассматривать как неспецифическую защитную реакцию, направленную, в первую очередь, на уничтожение поступающих в организм микроорганизмов. В процессе фагоцитоза моноциты и гранулоциты поглощают бактерии, а также крупные чужеродные молекулы и разрушают их своими лизосомальными ферментами. Фагоцитоз также сопровождается образованием активных форм кислорода, так называемых свободных радикалов кислорода, которые, окисляя липоиды бактериальных мембран, способствуют уничтожению микроорганизмов (более подробно свободнорадикальное окисление описано в главе 4 «Биологическое окисление»).

Как отмечалось выше, фагоцитозу также подвергаются комплексы антиген-антитело.

К факторам неспецифической защиты относятся кожные и слизистые барьеры, бактерицидность желудочного сока, воспаление, ферменты (лизоцим, протеиназы, пероксидазы), противовирусный белок - интерферон и др.

Регулярные занятия спортом и оздоровительной физкультурой стимулируют иммунную систему и факторы неспецифической защиты и тем самым повышают устойчивость организма к действию неблагоприятных факторов внешней среды, способствуют снижению общей и инфекционной заболеваемости, увеличивают продолжительность жизни. Однако исключительно высокие физические и эмоциональные перегрузки, свойственные спорту высших достижений, оказывают на иммунитет неблагоприятное влияние. Нередко у спортсменов высокой квалификации наблюдается повышенная заболеваемость, особенно в период ответственных соревнований (именно в это время физическое и эмоциональное напряжение достигает своего предела!). Очень опасны чрезмерные нагрузки для растущего организма. Многочисленные данные свидетельствуют, что иммунная система детей и подростков более чувствительна к таким нагрузкам.

В связи с этим важнейшей медико-биологической задачей современного спорта является коррекция иммунологических нарушений у спортсменов высокой квалификации путем применения различных иммуностимулирующих средств (см. гл. 21).

 

 

12.6. Кровяные пластинки(тромбоциты).

Тромбоциты - это безъядерные клетки, образующиеся из цитоплазмы мегакариоцитов - клеток костного мозга. Количество тромбоцитов в крови обычно 200-400 тыс./мм3. Основная биологическая функция этих форменных элементов - участие в процессе свертывания крови.

Свертывание крови - сложнейший ферментативный процесс, ведущий к образованию кровяного сгустка - тромба с целью предупреждения кровопотери при повреждении кровеносных сосудов.

В свертывании крови участвуют компоненты тромбоцитов, компоненты плазмы крови, а также вещества, поступающие в кровяное русло из окружающих тканей. Все вещества, участвующие в этом процессе, получили название факторы свертывания. По строению все факторы свертывания кроме двух (ионы Са2+ и фосфолипиды) являются белками и синтезируются в печени, причем в синтезе ряда факторов участвует витамин К.

Белковые факторы свертывания поступают в кровяное русло и циркулируют в нем в неактивном виде - в форме проферментов (предшественников ферментов), которые при повреждении кровеносного сосуда способны стать активными ферментами и участвовать в процессе свертывания крови. Благодаря постоянному наличию проферментов, кровь находится все время в состоянии «готовности» к свертыванию.

В самом упрощенном виде процесс свертывания крови можно условно разделить на три крупных этапа.

На первом этапе, начинающемся при нарушении целостности кровеносного сосуда, тромбоциты очень быстро (в течение секунд) накапливаются в месте повреждения и, слипаясь образуют своего рода «пробку», которая ограничивает кровотечение. Часть тромбоцитов при этом разрушается, и из них в плазму крови выходят фосфолипиды (один из факторов свертывания). Одновременно в плазме за счет контакта с поврежденной поверхностью стенки сосуда или с каким либо инородным телом (например, игла, стекло, лезвие ножа и т.п.) происходит активация еще одного фактора свертывания - фактора контакта. Далее с участием этих факторов, а также некоторых других участников свертывания формируется активный ферментный комплекс, называемый протромбиназой или тромбокиназой. Такой механизм активации протромбиназы называется внутренним, так как все участники этого процесса содержатся в крови. Активная протромбиназа также образуется и по внешнему механизму. В этом случае требуется участие фактора свертывания, отсутствующего в самой крови. Этот фактор имеется в тканях, окружающих кровеносные сосуды, и попадает в кровяное русло лишь при повреждении сосудистой стенки. Наличие двух независимых механизмов активирования протромбиназы повышает надежность системы свертывания крови.

На втором этапе под влиянием активной протромбиназы происходит превращение белка плазмы протромбина (это тоже фактор свертывания) в активный фермент - тромбин.

Третий этап начинается с воздействия образовавшегося тромбина на белок плазмы - фибриноген. От фибриногена отщепляется часть молекулы и фибриноген превращается в более простой белок - фибрин-мономер, молекулы которого спонтанно, очень быстро, без участия каких либо ферментов подвергаются полимеризации с образованием длинных цепей, называемых фибрином-полимером. Образовавшиеся нити фибрина-полимера являются основой кровяного сгустка - тромба. Вначале формируется студнеобразный сгусток, включающий в себя кроме нитей фибрина-полимера еще плазму и клетки крови. Далее из тромбоцитов, входящих в этот сгусток, выделяются особые сократительные белки (типа мышечных), вызывающие сжатие (ретракцию) кровяного сгустка.

В результате перечисленных этапов образуется прочный тромб, состоящий из нитей фибрина-полимера и клеток крови. Этот тромб располагается в поврежденном месте сосудистой стенки и препятствует кровотечению.

Все этапы свертывания крови протекают с участием ионов кальция.

В целом процесс свертывания крови занимает 4-5 минут.

В течение нескольких дней после образования кровяного сгустка, после восстановления целостности сосудистой стенки происходит рассасывание теперь уже не нужного тромба. Этот процесс называется фибринолизом и осуществляется путем расщепления фибрина, входящего в состав кровяного сгустка, под действием фермента плазмина (фибринолизина). Данный фермент образуется в плазме крови из своего предшественника - профермента плазминогена под влиянием активаторов, которые находятся в плазме или же поступают в кровяное русло из окружающих тканей. Активации плазмина также способствует возникновение при свертывании крови фибрина-полимера.

В последнее время выяснено, что в крови еще имеется противосвертывающая система, которая ограничивает процесс свертывания только поврежденным участком кровяного русла и не допускает тотального свертывания всей крови. В образовании противосвертывающей системы участвуют вещества плазмы, тромбоцитов и окружающих тканей, имеющие общее название антикоагулянты. По механизму действия большинство антикоагулянтов являются специфическими ингибиторами, действующими на факторы свертывания. Наиболее активными антикоагулянтами являются антитромбины, препятствующие превращению фибриногена в фибрин. Наиболее изученным ингибитором тромбина является гепарин, который предупреждает свертывание крови как in vivo, так и in vitro.

К противосвертывающей системе можно также отнести систему фибринолиза.








Дата добавления: 2015-03-07; просмотров: 717;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.03 сек.