Корреляционная зависимость. Уравнения регрессии

Функциональные зависимости достаточно хорошо знакомы чи­тателю. Часто эти зависимости можно выразить аналитически. Например, площадь круга зависит от радиуса (S = пr2), ускорение тела — от силы и массы (а = F/m0) и т. д.

При изучении объектов в биологии и медицине приходится иметь дело с функциональными связями другого рода. При этом определенному значению одного признака соответствует не одно значение другого, а целое распределение значений. Такая связь называется корреляционной связью, или просто корреляцией. Корреляционная связь, например, между возрастом и ростом де­тей выражается в том, что каждому значению возраста соответст­вует определенное распределение роста (а не одно единственное значение). При этом с увеличением возраста (до определенных пределов) возрастает и среднее значение роста.

Количественную характеристику взаимосвязи изучаемых при­знаков можно дать на основании вычисления показателя силы связи между ними (коэффициента корреляции) и определения за­висимости одного признака от изменений другого (уравнения рег­рессии). Коэффициент корреляции определяет не только степень, но и направление связей между величинами. Если отсутствие функциональной зависимости между величинами условно соот­ветствует нулевой корреляции, а полная функциональная зависи­мость — корреляции, равной единице, то сила корреляционной связи, вообще говоря, измеряется промежуточными значениями (от 0 до +1). При этом при положительном коэффициенте корре­ляции с увеличением одной величины возрастает и другая. Если же коэффициент корреляции отрицателен, то возрастание одного параметра сопровождается уменьшением другого.

В простом случае при линейной зависимости между исследуе­мыми параметрами используют коэффициент корреляции Бравэ—Пирсона, вычисляемый по формуле:

Здесь п — количество пар анализируемых признаков, хв и ув — выборочные средние значения в распределениях соответствую­щих параметров, ах и аусредние квадратические отклонения. Рассчитанный по формуле (3.32) коэффициент корреляции ращений формуле (2.17), испольнивают с теоретическим, который находят в специальной таблице с учетом определенного уровня значимости и объема выборки. Входными значениями таблицы являются число пар ис­следуемых признаков и уровень значимости (0,05 или 0,01). При этом нулевая гипотеза заключается в том, что корреляцион­ной связи между исследуемыми параметрами не существует. Если получают значения коэффициента корреляции больше таблично­го, с определенной степенью вероятности полагают, что корреля­ция в генеральной совокупности отличается от нуля.

Покажем на примере, как рассчитывают коэффициент корре­ляции Бравэ—Пирсона.

Оценить взаимосвязь частоты пульса X и максимального артериаль­ного давления Y у детей:

Согласно нулевой гипотезе, корреляционной связи между изучае­мыми параметрами нет. Рассчитаем выборочные средние значения и средние квадратичные отклонения для приведенных выше выборок ис­следуемых параметров: хв = 109,6; уп = 101,8; ах = 10,29 и су = 2,81. По формуле (3.32) рассчитываем коэффициент корреляции г = 0,44. Затем обращаемся к таблице 12 и находим для шести пар признаков (п = 6), те­оретическое значение коэффициента корреляции 0,811 при уровне значимости 0,05 и 0,917 при уровне значимости 0,01. В том и другом случае нулевая гипотеза оказывается справедливой и корреляционной связи между анализируемыми признаками не существует с вероятностью 0,95 и 0,99.

Количественное представление зависимости изменений одного признака от изменений другого позволяет получить показатели регрессии. Как правило, анализ регрессии начинают с графиче­ского изображения данных. При большом числе исходных дан­ных для выявления общей закономерности вычисляются средние значения одного признака (у) в группах (классах), соответствую­щих определенному интервалу значений другого признака (х). При построении графика по усредненным данным точки на гра­фике располагаются вдоль так называемой эмпирической линии регрессии. Затем проводят подбор и составление уравнения рег­рессии. С помощью такого уравнения можно теоретически рас­считать значения, которые должен принимать один признак при определенных значениях другого (уравнение прогноза).

Если предполагается существование линейной зависимости между исследуемыми признаками (линейная регрессия), то про­водить регрессионный анализ наиболее просто. Часто при этом применяют графический метод. Для проведения линии регрессии используют прозрачную линейку, придавая ей такое положение, чтобы выше и ниже предполагаемой линии регрессии оказалось приблизительно одинаковое число эмпирических точек. На полу­ченной прямой определяют координаты двух наиболее отдален­ных точек xv у1 и х2, у2. Затем составляют систему двух уравне­ний:

Из полученной системы уравнений определяют неизвестные a и b: b = (у2 - у1)/(х2 – х2г), а = у1-Ъх1 = у2~ bх2. Наконец, при из­вестных коэффициентах а и Ь записывают уравнение прогноза, на основании которого можно рассчитать значение параметра у при известном значении х.

В настоящее время при статистическом анализе экспериментальных данных широко используются компьютерные вычисли­тельные программы, позволяющие проводить корреляционный и регрессионный анализ. Более подробно практическое применение этого вида анализа рассматривается в курсе социальной гигиены и организации здравоохранения.

РАЗДЕЛ2

Механика. Акустика

Механика называют раздел физики, в котором изучается механическое движение материаль­ных тел. Под механическим движением понимают изменение по­ложения тела или его частей в пространстве с течением времени. Механика, в основу которой положены законы Ньютона, называ­ется классической. В ней рассматриваются движения макроско­пических тел, происходящие со скоростями, много меньшими скорости света в вакууме. Вопросы данного раздела могут, в част­ности, быть использованы для следующих целей:

— — — понимания механики движения целого организма и меха­ники опорно-двигательного аппарата человека;

— — — знания механических свойств биологических тканей и жидкостей;

— — — знания общих закономерностей периодических процессов, протекающих в организме;

— — — понимания работы уха и вестибулярного аппарата как физических устройств, сердца как насоса и т. выяснения биофизического механизма действия ультразву­ка идр.

 

 

Г Л А В А 4 Некоторые вопросы биомеханики

Биомеханикой называют раздел биофизики, в котором рас­сматриваются механические свойства живых тканей и орга­нов, а также механические явления, происходящие как с целым организмом, так и с отдельными его органами. Говоря кратко, биомеханика — это механика живых систем.








Дата добавления: 2015-03-03; просмотров: 1667;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.