Основные законы электрических цепей
На рис. 1.7 изображен участок цепи с сопротивлением R. Ток, протекающий через сопротивление R, пропорционален падению напряжения на сопротивлении и обратно пропорционален величине этого сопротивления.
Рис. 1.7
Основными законами электрических цепей, наряду с законом Ома, являются первый и второй законы Кирхгофа. В соответствии с первым законом Кирхгофа, алгебраическая сумма токов в любом узле цепи равна нулю:
Возьмем схему на рис. 1.8 и запишем для нее уравнение по первому закону Кирхгофа.
Токам, направленным к узлу, присвоим знак "плюс", а токам, направленным от узла - знак "минус". Получим следующее уравнение:
Рис. 1.8
Согласно второму закону Кирхгофа, алгебраическая сумма ЭДС вдоль любого замкнутого контура равна алгебраической сумме падений напряжений в этом контуре
Возьмем схему на рис. 1.9 и запишем для внешнего контура этой схемы уравнение по второму закону Кирхгофа.
Для этого выберем произвольно направление обхода контура, например, по часовой стрелке. ЭДС и падения напряжений записываются в левую и правую части уравнения со знаком "плюс", если направления их совпадают с направлением обхода контура, и со знаком "минус", если не совпадают.
При определении тока в ветви, содержащей источник ЭДС, используют закон Ома для активной ветви.
Рис. 1.9
Возьмем ветвь, содержащую сопротивления и источники ЭДС. Ветвь включена к узлам a-b, известно направление тока в ветви (рис. 1.10).
Рис. 1.10
Возьмем замкнутый контур, состоящий из активной ветви и стрелки напряжения Uab, и запишем для него уравнение по второму закону Кирхгофа. Выберем направление обхода контура по часовой стрелке.
Получим
Из этого уравнения выведем формулу для тока
ЭДС в формуле записывается со знаком "плюс", если направление ее совпадает с направлением обхода контура и со знаком "минус", если не совпадает. .
Дата добавления: 2015-02-23; просмотров: 881;