Экономические законы развитая информационных технологий
1.4.1. Закон Гордона Мура
Закон Г. Мура оставался верным последние 40 лет и, вероятно, останется неизменным еще в течение, по меньшей мере, 15 лет. Он гласит: «Вычислительная мощь микропроцессоров и плотность микросхем памяти удваивается примерно каждые 18 месяцев при неизменной цене».
История открытия закона. Журнал по электронике в 1965 г. попросил Гордона Мура предсказать развитие полупроводниковой индустрии на следующие 10 лет. Мур проанализировал возможности существовавших в то время технологий и темпы усложнения полупроводниковых чипов. Далее он выполнил экстраполяцию на период 10 лет и получил сформулированную выше закономерность, предсказывающую появление очень сложных чипов с несколькими десятками тысяч транзисторов. Результаты данного анализа были представлены в соответствующей статье: Moore G. E. Cramming more components onto integrated circuits // Electronics, 1965 (April 19). Vol. 38, N. 8.
Рост числа транзисторов (архитектура микропроцессоров Intel) показан в табл. 1.1.
Таблица 1.1
35/
Число транзисторов в микропроцессорах Intel (прогноз). Как ожидается, в 2007 г. появятся процессоры с числом транзисторов 1 млрд. Крейг Барретт в своем докладе на IDF Spring 2002 отметил, что в ближайшие 15 лет развитие полупроводниковых технологий позволит разработчикам процессоров реализовать следующие характеристики: 2 млрд транзисторов; тактовая частота процессоров достигнет 30 ГГц; 1 трлн инструкций в секунду; размер транзисторов 10 нм (0,01 мкм); станет возможным использование подложек 18" (в настоящее время осуществляется переход с 8 на 12" пластины). Уменьшение расстояния между элементами на одной микросхеме является следствием развития технологических процессов их производства (табл. 1.2).
Таблица 12
В 1980-е гг. рубеж в 1 мкм был успешно преодолен. В 1990-е гг. граница была отодвинута уже до 0,1 мкм (100 нм). В 2002 г. «Intel» уже демонстрирует чипы, созданные по технологии 0,09 мкм (90 нм). А сегодня речь уже идет о преодолении барьера в 0,01 мкм (10 нм).
Потребляемая мощность в процессорах Intel. Патрик Гелсингер: «Мы предсказываем, что следующие 10 лет в первую очередь мы будем ограничены таким параметром, как мощность (power). В 2010 г. мы планируем процессор с частотой 30 ГГц, с 10 млрд транзисторов, технология 20 нм или еще меньше. Все это принесет просто сногсшибательное быстродействие. Но следует вспомнить, что мы очень плавно двигались от 1 до 10 Вт, затем от 10 до 100 Вт. И мы на пути от 100 до 1000 Вт, а за 1000 идет 10 000». В этом заключается экспоненциальный рост, который великолепно работает как за, так и против.
Плотность энергии в процессорах Intel. Еще сложнее, когда такая мощность приходится на очень маленькую площадь, тогда речь идет о плотности мощности. Проведем некоторые аналогии: если в конце 1980-х гг. это была просто горячая плита, то в середине грядущего десятилетия — ядерный реактор, в конце — уже сопло ракеты, а в перспективе — поверхность Солнца (рис. 1.7).
Сущность закона Гордона Мура. Г. Мур заметил, что приблизительно каждые 1,5 года расстояния между элементами на одном кристалле сокращаются примерно на 30%. Следовательно, число элементов на таком кристалле удваивается. Увеличение числа элементов
36/
на одном кристалле сопровождается, как правило, ростом его производительности, которая определяется тактовой частотой. Выпуск новой модели микропроцессора происходит в среднем каждые 3—5 лет, а его производительность возрастает в 2—4 раза.
Стоимость нового микропроцессора на рынке постоянна и составляет от 500 до 800 дол. Следовательно, можно говорить не только о росте числа элементов на одном кристалле, но и об уменьшении цены на микропроцессоры одинаковой производительности (рис. 1.8).
Следствия, вытекающие из закона Г. Мура.
1. Закон Артура Рока. Артур Рок, известный своей склонностью к участию в рискованных
37/
предприятиях, в 1968 г. помог основать корпорацию «Intel». Закон Рока — это всего лишь маленькое дополнение к закону Г. Мура: «Стоимость основных фондов, используемых в производстве полупроводников, удваивается каждые четыре года».
2. Закон Билла Макрона. В основе закона Б. Макрона лежит закон Г. Мура. Этот закон гласит: «Машина (PC), которая бы Вас полностью устроила, никак не может стоить меньше 5000 дол.».
1.4.2. Закон Роберта Меткалфа
Согласно Роберту Меткалфу ценность (Цn) всей системы (рис. 1.9) растет быстрее, чем число (n) элементов (приблизительно как квадрат числа компонентов n2). Причем, Цn = {n - 1)с, где с = const — оценка возможности вести переговоры с одним абонентом. Общая ценность сети (Рn), состоящей из n узлов, для всех ее абонентов может быть вычислена по формуле Рn = n(n - 1)с и возрастает по квадратичному закону (табл. 1.3).
Таблица 1.3
Ценность сети тем выше, чем выше число ее компонентов n. Другими словами, сети способны генерировать новую ценность.
Таким образом, чем больше компонентов у вычислительной сети (например, Интернет), тем большую ценность она представляет для пользователя, и тем больше пользователей будут стремиться подключиться к ней (рис. 1.10).
В течение ближайших нескольких лет число пользователей Интернет увеличится с 500 млн до 1 млрд, и тогда ценность этой сети как средства доступа к информации, коммуникаций и коммерции станет еще выше.
38/
Сетевой эффект (network effect). Этот эффект заключается в том, что ценность подсоединения к сети для пользователя зависит от числа других пользователей, уже подсоединенных к сети.
Другие названия сетевого эффекта:
• сетевые экстерналии (network externalities);
• эффект масштаба со стороны спроса (demand-side economies of scale);
• положительная обратная связь (positive feedback).
Сетевые рынки (network markets). Рынки, на которых наблюдается сетевой эффект, называются сетевыми (network markets). Рынок называется сетевым, если потребители получают пользу от следующих элементов:
1. Сеть пользователей. Ценность сети пользователей продукта зависит от числа пользователей внутри и за пределами организации. Чем больше пользователей имеется в сети, тем большую полезность получает потребитель от использования продукта. Поэтому ценность продукта для покупателя зависит не только от самого продукта, но и от размера сети пользователей.
2. Сеть комплиментарных продуктов. Ценность сети зависит от числа разнообразных комплиментарных (дополняющих) продуктов и услуг. Чем больше дополняющих продуктов и услуг, тем большую пользу (ценность) потребитель извлекает из самого продукта.
3. Сеть производителей. Ценность сети зависит от числа поставщиков продукта и степени конкуренции между ними. Покупатели не
39/
любят покупать продукты от единственного поставщика, а предпочитают иметь множество квалифицированных поставщиков.
Сетевой эффект для маркетинга. Значение сетевого эффекта для маркетинга заключается в том, что на сетевых рынках покупатели распределяют ресурсы между конкурирующими продуктами в зависимости как от характеристик самого продукта, так и от ценности системы интегрированных сетей, окружающих продукт.
Закон Дэвида Рида (закон массы). Дэвид Рид — профессор Гарвардской школы бизнеса. Закон Рида является логическим продолжением закона Меткалфа. Рид выделяет три этапа в развитии ИТ: широковещательный (broadcast), транзакционный (transaction) и групповой (group forming). Широковещательный принцип предполагает распространение «от одного ко многим», в согласии с ним действуют все средства массовой информации, начиная от средневековых глашатаев до современного телевидения. Транзакционный принцип «от одного одному» начался с обычной почты, продолжился в телефонии, факсах и электронной почте. С новыми сетевыми технологиями Интранет и Интернет появилась возможность реализовать групповой принцип; речь идет о сетях типа Group Forming Network (GFN) по терминологии Рида.
Эффективность GFN. Закон Меткалфа часто используют для иллюстрации эффективности транзакционных сетей. «Сетевой эффект» соответствует числу возможных связей, и если каждый участник сети может связаться с каждым, то эффект пропорционален квадрату числа участников сети п2.
Рид пошел дальше, он утверждает, что сформулировал на основе закона Меткалфа свой закон для таких сетей, которые позволяют образовывать группы. Поскольку число потенциально возможных связей по типу «многие общаются со многими» равно числу сочетаний, то при образовании групп в сети GFN оно равно 2" (рис. 1.11). Это дает основание Риду утверждать, что и эффективность GFN пропорциональна 2".
1.4.3. Закон фотона
Закон фотона является своего рода телекоммуникационным эквивалентом закона Г. Мура, но более эффективным. Согласно ему пропускную способность волоконно-оптического канала передачи информации можно удваивать примерно каждые 10 месяцев.
Сегодня между странами и континентами протянуто более 700 млн. км волоконной оптики. Полезная пропускная способность этого волокна удваивается примерно один раз в год. По мере вхождения этой оптической инфраструктуры в наши города высокоскоростной Интернет становится частью многих жилых домов, что делает эту сеть еще более ценной.
40/
Таким образом, рассмотренные нами три закона свидетельствуют о том, что стал экономически выгодным переход от бумажных к электронным технологиям хранения и обработки информации любого вида. Другими словами, стоимость использования традиционных, бумажных технологий, применяемых при хранении и управлении, стала выше (дороже) применения компьютерных (электронных) технологий.
41/
Глава 2 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ
Информационные технологии различным образом влияют на повышение производительности. Во-первых, сама по себе технология позволяет быстрее и эффективнее выполнить необходимую работу. Во-вторых, она преобразует сам процесс производства продукции. Многие компании, вкладывающие деньги в крупные инвестиционные ИТ-проекты, значительно улучшают свои позиции на рынке. Центром изучения проблем электронного бизнеса (Center for e-Business), который возглавляет профессор Бринджолфссон[1], было разработано семь основных критериев, позволяющих оценить результат сделанных в ИТ-проект инвестиций (г-н Бринджолфссон называет этот результат «цифровой организацией» компании).
1. Преобразование бумажного документооборота в электронный.
2. Использование распределенной системы принятия решений в организации. Система принятия решений должна быть регламентирована и централизована посредством электронного документооборота. Отдельно должны рассматриваться ситуации, требующие вмешательства человека, касающиеся различных мнений, исключительных процессов и творчества.
3. Разработка системы поощрений за различные достижения в области повышения производительности работы компании.
4. Создание более открытого доступа к информации и средствам связи. В организации должны быть четко налажены как горизонтальные, так и вертикальные связи в системе управления. Для этого необходимо широкое использование электронной почты, внутренней сети предприятия и т.д. Подобная техническая поддержка должна являть-
42/
ся частью системы принятия решений на предприятии и способствовать организации поощрительных мероприятий.
5. Сосредоточение на более доходных сферах деятельности предприятия. Руководству необходимо сократить финансирование малорентабельных отраслей, при этом должным образом инвестировать средства в построение корпоративной культуры. Должны быть четко сформулированы цели предприятия.
6. Инвестирование средств в кадровую политику. Предприятие должно уделять достаточно средств и времени менеджеров высшего и среднего звена процессу подбора персонала.
7. Активное инвестирование денежных средств в систему обучения сотрудников для повышения их квалификации.
«По моим расчетам, 9/10 совокупных затрат и 9/10 прибыли от крупного ИТ-проекта приходятся не на оборудование и даже не на программное обеспечение, — отметил профессор. — Эти деньги тратятся на формирование новой структуры бизнес-процессов предприятия и обучение персонала»[2].
Основные понятия, терминология и классификация
2.1.1. Истоки и этапы развития информационных технологий
Информационные технологии можно представить совокупностью трех основных способов преобразования информации: хранение, обработка и передача.
На раннем этапе развития общества профессиональные навыки передавались в основном личным примером по принципу делай как я. В качестве способа передачи информации использовались ритуальные танцы, обрядовые песни, устные предания и т.д., которые реализовывались человеком.
Первый этап развития информационной технологии связан с открытием способов длительного хранения информации на материальном носителе. Это и пещерная живопись, сохраняющая наиболее характерные зрительные образы, связанные с охотой и ремеслами (примерно 25—30 тыс. лет назад), и гравировка по кости, обозначающая лунный календарь, а также числовые нарезки для измерения (выполненные примерно 20—25 тыс. лет назад). Способы хранения информации подверглись совершенствованию, а период до появления инструментов для обработки материальных объектов и регистрации инфор-
43/
мационных образов на материальном носителе составил около миллиона лет или 1% времени существования цивилизации. Становится понятно, почему при решении абстрактных информационных задач эффективность человека резко возрастает в случае представления информации в виде изображений материальных объектов (использование графических интерфейсов). В этом случае включаются в работу те области человеческой интуиции, которые развивались в первые 99% времени существования цивилизации.
Второй этап развития информационной технологии начал свой отсчет около 6 тыс. лет назад и связан с появлением письменности. Эра письменности характеризуется появлением новых способов регистрации на материальном носителе символьной информации. Применение этих технологий позволяет осуществлять накопление и длительное хранение знаний. В качестве носителей информации на втором этапе развития ИТ выступали и до сих пор выступают: камень, кость, дерево, глина, папирус, шелк, бумага. Сейчас этот ряд можно продолжить: магнитные покрытия (лента, диски, цилиндры и т.д.), жидкие кристаллы, оптические носители, полупроводники и т.д. В этот период накопление знаний происходило достаточно медленно и было обусловлено трудностями, связанными с доступом к информации (недостаток второго этапа развития ИТ). Знания, представленные в виде рукописных изданий, хранились в единичных экземплярах, причем доступ к ним был существенно затруднен, так как они охранялись специальной кастой — жрецами, которые наделялись исключительным правом монопольного доступа к фонду человеческого опыта и являлись посредниками между накопленными знаниями и заинтересованными людьми. Этот барьер был разрушен на следующем этапе.
Начало третьего этапа датируется 1445 г., когда И. Гуттенберг изобрел печатный станок, и подводит итог становлению способов регистрации информации. Появление книг открыло доступ к информации широкому кругу людей и резко ускорило темпы накопления систематизированных по отраслям знаний; За три столетия после изобретения печатного станка оказалось возможным накопить ту «критическую массу» социально доступных знаний, при которой начался лавинообразный процесс развития промышленной революции. Печатный станок сыграл роль информационного ключа, резко повысив пропускную способность социального канала обмена знаниями.
Характерным признаком первой информационной революции является то, что с этого момента началось необратимое поступательное движение технологической цивилизации. Книгопечатание — это первая информационная революция.
Четвертый этап развития информационной технологии начался в 1946 г. с появлением электронной вычислительной машины (ЭВМ)
44/
для обработки информации. Этой машиной является первая ЭВМ (типа ENIАС), запущенная в эксплуатацию в Пенсильванском университете. Эта машина не имела хранимой программы, которая задавалась путем шнуровой коммутации (аналог табуляторов — счетно-решающих машин). Электронно-вычислительная машина UNIVAC (1949) уже использовала общую память и для программ, и для данных, что обеспечивало сохранение программ на носителе (магнитных лентах, магнитных барабанах).
К этому времени уже значительная часть населения была занята в информационной сфере.
Характерным признаком второй информационной революции является появление впервые за всю историю развития человечества усилителя интеллекта — ЭВМ.
Дальнейшее развитие вычислительной техники, совершенствование способов обработки информации вызвало развитие способов передачи информации — появление информационно-вычислительных (компьютерных) сетей и привело к третьей информационной революции. В 1983 г. Международной организацией по стандартизации (International Standard Organization — ISO) разработана система стандартных протоколов, получившая название модели взаимодействия открытых систем (Open System Interconnection — OSI/ISO) или эталонной модели взаимодействия открытых систем (ЭМ ВОС). Модель OSI представляет самые общие рекомендации для построения стандартных совместимых сетевых программных продуктов, служит базой для разработки сетевого оборудования. Появление этого стандарта сыграло важную роль при формировании различных компьютерных сетей, в том числе и Интернет. Некоторые авторы, анализируя информационные технологии, которые используются в Интернет, сравнивают его с нейронной сетью и обсуждают вопрос о возникновении и развитии нейронной сети планеты и становлении планетарного разума.
2.1.2. Информатика и информационные технологии
Информационные технологии имеют определенные цели, методы и средства реализации [6]. Целью информационной технологии является создание из информационного ресурса качественного информационного продукта, удовлетворяющего требованиям пользователя. Методами информационных технологий являются методы и приемы моделирования, разработки и реализации процедур обработки данных. В качестве средств информационных технологий применяются математические методы и модели решения задач, алгоритмы обработки данных, инструментальные средства моделирования бизнес-процессов, данных, проектирования информационных систем, разработки про-
45/
грамм, собственно программные продукты, разнообразные информационные ресурсы, технические средства обработки данных.
Различают глобальные, базовые и специальные (конкретные) информационные технологии. Глобальная информационная технология включает в себя модели, методы и средства, формирующие информационные ресурсы общества. Базовые информационные технологии предназначены для определенной области применения — производство, научные исследования, обучение и др. Специальные (конкретные) информационные технологии реализуют обработку данных при решении функциональных задач пользователей, например учета, планирования, анализа.
При моделировании информационного процесса и его фаз выделяют три уровня: концептуальный, на котором описываются содержание и структура предметной области; логический, на котором проводится формализация модели; физический, определяющий способ реализации информационной модели в техническом устройстве.
Информатика как научная и прикладная дисциплина тесно связана с информационными технологиями. Место и состав информационных технологий в структуре дисциплины «Информатика» приведены ниже:
46/
Раздел «Теоретическая информатика» предназначен для формирования современного научного мировоззрения, при котором информация рассматривается как фундаментальное семантическое свойство природы, а информационные процессы — как важнейшие интеллектуальные компоненты процессов функционирования любых технических, социальных и природных систем, включая процессы познания человеком окружающего мира. Данный раздел содержит также вопросы, связанные с изучением современной научной методологии в информатике и, в первую очередь, теоретических основ информационного моделирования, статистических методов, методов проведения «вычислительного эксперимента», а также методов решения плохо формализуемых задач с неполными и нечеткими исходными данными.
Во втором и третьем разделах «Средства информатизации» и «Информационные технологии» подробно рассматриваются аппаратные и программные средства информатизации, их информационное обеспечение, а также базовые и прикладные информационные технологии.
Основная задача раздела «Социальная информатика» — дать достаточно полное системное представление об информационном характере процесса развития современного общества, а также о возникающих при этом проблемах и методах их решения на основе использования информационного подхода и возможностей перспективных информационных технологий.
Описание информационных технологий удобно проводить с помощью классификатора (рис. 2.1), позволяющего описывать ИТ на четырех уровнях: технологии, процессы, процедуры, операции. Например, в качестве составляющих базовой информационной технологии, описанной на концептуальном уровне, можно назвать такие процес-
47/
сы, как получение, отображение информации и накопление, обработка, передача данных, и соответствующие им процедуры: сбор, подготовка, ввод; перевод в алфавитно-цифровую форму, построение графиков, синтез речи; архивирование, обновление, поиск; преобразование, логический вывод, генерация знаний; коммутация, маршрутизация, обмен.
Дата добавления: 2015-02-19; просмотров: 4063;