Расчет характеристик стратифицированной выборки.
Характеристики такой выборки рассчитываются как «взвешенные» величины: показатели по каждой страте комбинируются в общую среднюю; вклад групповых средних пропорционален «весу» каждой страты в выборочной или генеральной совокупности.
В стратифицированной выборке общая дисперсия выборки имеет как бы два источника: дисперсию групповых средних, которые характеризуют каждую страту sx2, и среднюю дисперсию из дисперсий внутри каждой из этих страт s2i. Первую составляющую принято называть межгрупповой дисперсией, а вторую — внутригрупповой дисперсией.
Это записывается следующим образом: s= sx2 + s2i (7)
Расчет средней ошибки при отборе, пропорциональном численности единиц в стратах, производится по формуле
![]() |
или, если пренебречь отношением n/N,
![]() |
В выражениях (8) и (9) s2i вычисляется исходя из формулы (7), т. е. s2i=s2-s2x, где s2 — общая дисперсия выборки — подсчитывается как для простой выборки, не принимая во внимание стратификацию.
![]() |
Из соотношения для средней ошибки (7) следует, что ошибка стратифицированной выборки меньше средней ошибки чисто случайной выборки либо равна ей, когда межгрупповая дисперсия равна нулю.
Пример. Предположим, что выборка содержит 5 страт (группы семей по среднему доходу6). Необходимо определить величину расходов на годовую, подписку. Из каждой 2-й страты взяты по две семьи (объем выборки n = 10, см. табл. 19).
![]() |
![]() |
.
Таким образом, как видно из рассмотренного примера, стратифицированная выборка при прочих равных условиях дает более точные результаты.
Дата добавления: 2015-02-19; просмотров: 945;