ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ
Наряду с мощными и быстродействующими химическими системами в организме функционируют органные механизмы компенсации и устранения сдвигов КЩР. Для их реализации и достижения необходимого эффекта требуется больше времени — от нескольких минут до нескольких часов. К наиболее эффективным физиологическим механизмам регуляции КЩР относят процессы, протекающие в лёгких, почках, печени и ЖКТ.
Лёгкие
Лёгкие обеспечивают устранение или уменьшение сдвигов КЩР путём изменения объёма альвеолярной вентиляции. Это достаточно мобильный механизм — уже через 1–2 мин после изменения объёма альвеолярной вентиляции компенсируются или устраняются сдвиги КЩР.
• Причиной изменения объёма дыхания является прямое или рефлекторное изменение возбудимости нейронов дыхательного центра.
• Снижение рН в жидкостях организма (плазма крови, СМЖ) является специфическим рефлекторным стимулом увеличения частоты и глубины дыхательных движений. Вследствие этого лёгкие выделяют избыток CO2 (образующийся при диссоциации угольной кислоты). В результате содержание H+ (HCO3– + H+ = H2CO3 ® H2O + CO2) в плазме крови и других жидкостях организма снижается.
• Повышение рН в жидких средах организма снижает возбудимость инспираторных нейронов дыхательного центра. Это приводит к уменьшению альвеолярной вентиляции и выведению из организма CO2, т.е. к гиперкапнии. В связи с этим в жидких средах организма возрастает уровень угольной кислоты, диссоциирующей с образованием H+, — показатель рН снижается.
Следовательно, система внешнего дыхания довольно быстро (в течение нескольких минут) способна устранить или уменьшить сдвиги рН и предотвратить развитие ацидоза или алкалоза: увеличение вентиляции лёгких в два раза повышает рН крови примерно на 0,2; снижение вентиляции на 25% может уменьшить рН на 0,3‑0,4.
Почки
Почки обеспечивают активное выведение из организма с мочой ряда веществ с кислыми или основными свойствами, а также поддерживают концентрацию бикарбонатов крови. К главным механизмам уменьшения или устранения сдвигов КЩР крови, реализуемых нефронами почек, относят ацидогенез, аммониогенез, секрецию фосфатов и K+,Na+‑обменный механизм.
• Ацидогенез. Этот энергозависимый процесс, протекающий в эпителии дистальных отделов нефрона и собирательных трубочек, обеспечивает секрецию в просвет канальцев H+ в обмен на реабсорбируемый Na+ (рис. 13–1).
Ы ВЁРСТКА Рисунок не должен быть большим (максимум 0,5 страницы)
Ы ВЁРСТКА Вставить файл «ПФ Рис 13 01 Реабсорбция HCO3‑ в клетках проксимального отдела»
Рис.13–1.Реабсорбция HCO3‑ в клетках проксимального отдела. КА — карбоангидраза.
Ы ВЁРСТКА Рисунок не должен быть большим (максимум 0,5 страницы)
Ы ВЁРСТКА Вставить файл «ПФ Рис 13 02 Реабсорбция HCO3‑ в клетках проксимального отдела»
Рис.13–2.Секреция H+ клетками канальцев и собирательных трубочек. КА — карбоангидраза.
Количество секретируемого H+ эквивалентно его количеству, попадающему в кровь с нелетучими кислотами и H2CO3. Реабсорбированный из просвета канальцев в плазму крови Na+ участвует в регенерации плазменной гидрокарбонатной буферной системы (рис. 13–2).
• Аммониогенез, как и ацидогенез, реализует эпителий канальцев нефрона и собирательных трубочек. Аммониогенез осуществляется путём окислительного дезаминирования аминокислот, преимущественно (примерно 2/3) — ãëóòàìèíовой, в меньшей мере — аланина, аспарагина, лейцина, гистидина. Образующийся при этом аммиак диффундирует в просвет канальцев. Там NH3+ присоединяет ион H+ с образованием иона аммония (NH4+). Ионы NH4+ замещают Na+ в солях и выделяются преимущественно в виде NH4Cl и (NH4)2SO4. В кровь при этом поступает эквивалентное количество гидрокарбоната натрия, обеспечивающего регенерацию гидрокарбонатной буферной системы.
• Секреция фосфатов осуществляется эпителием дистальных канальцев при участии фосфатной буферной системы:
Na2HPO4 + H2CO3 NaH2PO4 + NaHCO3
Образующийся гидрокарбонат натрия реабсорбируется в кровь и поддерживает гидрокарбонатный буфер, а NaH2PO4 выводится из организма с мочой.
Таким образом, секреция H+ эпителием канальцев при реализации трёх описанных выше механизмов (ацидогенеза, аммониогенеза, секреции фосфатов) сопряжена с образованием гидрокарбоната и поступлением его в плазму крови. Это обеспечивает постоянное поддержание одной из наиболее важных, ёмких и мобильных буферных систем — гидрокарбонатной и как следствие — — эффективное устранение или уменьшение опасных для организма сдвигов КЩР.
• К+,Na+‑обменный механизм, реализуемый в дистальных отделах нефрона и начальных участках собирательных трубочек, обеспечивает обмен Na+ первичной мочи на K+, выводящийся в неё эпителиальными клетками. Реабсорбированный Na+ в жидких средах организма участвует в регенерации гидрокарбонатной буферной системы. K+,Na+‑обмен контролируется альдостероном. Более того, альдостерон регулирует (увеличивает) объём секреции и экскреции H+.
Таким образом, почечные механизмы устранения или уменьшения сдвигов КЩР осуществляются путём экскреции H+ и восстановления резерва гидрокарбонатной буферной системы в жидких средах организма.
Печень
Печень играет существенную роль в компенсации сдвигов КЩР. В ней действуют, с одной стороны, общие внутри‑ и внеклеточные буферные системы (гидрокарбонатная, белковая и др.), с другой стороны, в гепатоцитах осуществляются различные реакции метаболизма, имеющие прямое отношение к устранению расстройств КЩР.
• Синтез белков крови, входящих в белковую буферную систему. В печени образуются все альбумины, а также фибриноген, протромбин, проконвертин, проакцелерин, гепарин, ряд глобулинов и ферментов.
• Образование аммиака, способного нейтрализовать кислоты как в самих гепатоцитах, так и в плазме крови и в межклеточной жидкости.
• Синтез глюкозы из неуглеводных веществ — аминокислот, глицерина, лактата, пирувата. Включение этих органических нелетучих кислот при образовании глюкозы обеспечивает снижение их содержания в клетках и биологических жидкостях. Так, МК, которую многие органы и ткани не способны метаболизировать, в гепатоцитах примерно на 80% трансформируется в H2O и CO2, а оставшееся количество ресинтезируется в глюкозу. Таким образом, лактат превращается в нейтральные продукты.
• Выведение из организма нелетучих кислот — глюкуроновой и серной при детоксикации продуктов метаболизма и ксенобиотиков.
• Экскреция в кишечник кислых и основных веществ с жёлчью.
Дата добавления: 2015-02-16; просмотров: 1998;