Моделирование сезонных колебаний

Простейший подход к моделированию сезонных колебаний – это расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда.

Общий вид аддитивной модели следующий:

. (4.3)

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой ( ), сезонной ( ) и случайной ( ) компонент.

Общий вид мультипликативной модели выглядит так:

. (4.4)

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой ( ), сезонной ( ) и случайной ( ) компонент.

Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение аддитивной и мультипликативной моделей сводится к расчету значений , и для каждого уровня ряда.

Процесс построения модели включает в себя следующие шаги.

1) Выравнивание исходного ряда методом скользящей средней.

2) Расчет значений сезонной компоненты .

3) Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных ( ) в аддитивной или ( ) в мультипликативной модели.

4) Аналитическое выравнивание уровней ( ) или ( ) и расчет значений с использованием полученного уравнения тренда.

5) Расчет полученных по модели значений ( ) или ( ).

6) Расчет абсолютных и/или относительных ошибок. Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок для анализа взаимосвязи исходного ряда и других временных рядов.

В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна нулю. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле.

Скорректированные значения сезонной компоненты в аддитивной модели равны , где , в мультипликативной модели получаются при умножении ее средней оценки на корректирующий коэффициент , где .

Прогнозное значение уровня временного ряда в аддитивной модели есть сумма трендовой и сезонной компонент, в мультипликативной модели есть произведение трендовой и сезонной компонент.








Дата добавления: 2015-02-16; просмотров: 865;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.