Полупроводниковые диоды и триоды
(транзисторы)
Односторонняя проводимость контактов двух полупроводников (или металла с полу проводником) используется для выпрямления в преобразования переменных токов. Если имеется один электронно-дырочный переход, то его действие аналогично действию двухэлепродной лампы — диода (см. § 105). Поэтому полупроводниковое устройство, содержащее одни р-n-:переход, называется полупроводниковым (красталлическим) диодом. Полупроводниковые диоды по конструкции делятся на точечныеи плоскостные.
В качестве примера рассмотрим точечный германиевый диод (рис. 339), в котором тонкая вольфрамовая проволока 1 прижимается к n-германию 2 острием, покрытым алюминием. Если через диод в прямом направлении пропустить кратковременный импульс тока, то при этом резко повышается диффузия А1 в Ое и образуется слой германия, обогащенный алюминием и обладающий p-проводимостью. На границе этого слоя образуется p-n-переход, обладающий высоким коэффициентом выпрямления. Благодаря малой емкости контактного слоя точечные диоды применяются в качестве детекторов (выпрямителей) высокочастотных колебаний вплоть до сантиметрового диапазона длин волн.
Рис. 339
Принципиальная схема плоскостного меднозакисного (купроксного) выпрямителя дана на рис. 340. На медную пластину с помощью химической обработки наращивается слой закиси меди Сu2О, который покрывается слоем серебра. Серебряный электрод служит только для включения выпрямителя в цепь. Часть слоя Cu2O, прилегающая к меди и обогащенная ею, обладает электронной проводимостью, а часть слоя Сu2О, прилегающая к Ag и обогащенная (в процессе изготовления выпрямителя) кислородом, — дырочной проводимостью. Таким образом, в толще закиси меди образуется запирающий слой с пропускным направлением тока от Сu2О к Сu (р®n).
Рис. 340
Технология изготовления германиевого плоскостного диода описана в § 249 (см. рис. 325). Распространенными являются также селеновые диоды и диоды на основе арсенида галлия и карбида кремния. Рассмотренные диоды обладают рядом преимуществ по сравнению с электронными лампами (малые габаритные размеры, высокие к.п.д. и срок службы, постоянная готовность к работе и т. д.), но они очень чувст вительны к температуре, поэтому интервал их рабочих температур ограничен (от -70 до + 120°С). p-n-Переходы обладают не только прекрасными выпрямляющими свойствами, но могут быть использованы также для усиления, а если в схему ввести обратную связь, то и для генерирования электрических колебаний. Приборы, предназначенные для этих целей, получили название полупроводниковых триодов или транзисторов (первый транзистор создан в 1949 г. американскими физиками Д. Бардином, У. Брат-теином и У. Шокли; Нобелевская премия 1956 г.).
Для изготовления транзисторов используются германий и кремний, так как они характеризуются большой механической прочностью, химической устойчивостью и большей, чем в других полупроводниках, подвижностью носителей тока. Полупроводниковые триоды делятся на точечные и плоскостные. Первые значительно усиливают напряжение, но их выходные мощности малы из-за опасности перегрева (например, верхний предел рабочей температуры точечного германиевого триода лежит в пределах 50—80°Q. Плоскостные триоды являются более мощными. Они могут быть типa р-n-р и типа n-р-nв зависимости от чередования областей с различной проводимостью.
Для примера рассмотрим принцип работы плоскостного триода р-n-р, т. е. триода на основе n-полупроводника (рис. 341).
Рис. 341
Рабочие «электроды» триода, которыми являются база (средняя часть транзистора), эмиттер и коллектор (прилегающие к базе с обеих сторон области с иным типом проводимости), включаются в схему с помощью невыпрямляющих контактов — металлических проводников. Между эмиттером и базой прикладывается постоянное смещающее напряжение в прямом направлении, а между базой и коллектором — постоянное смещающее напряжение в обратном направле нии. Усиливаемое переменное напряжение подается на входное сопротивление Rвх, а усиленное — снимается с выходного сопротивления Rвых.
Протекание тока в цепи эмиттера обусловлено в основном движением дырок (они являются основными носителями тока) и сопровождается их «впрыскиванием» — инжекцией — в область базы. Проникшие в базу дырки диффундируют по направлению к коллектору, причем при небольшой толщине базы значительная часть инжектированных дырок достигает коллектора. Здесь дырки захватываются полем, действующим внутри перехода (притягиваются к отрицательно заряженному коллектору), вследствие чего изменяется ток коллектора. Следовательно, всякое изменение тока в цепи эмиттера вызывает изменение тока в цепи коллектора.
Прикладывая между эмиттером и базой переменное напряжение, получим в цепи коллектора переменный ток, а на выходном сопротивлении — переменное напряжение Величина усиления зависит от свойств р-n-переходов, нагрузочных сопротивлений и напряжения батареи Бк. Обычно Rвых >> Rвх поэтому Uвых значительно превышает входное напряжение UK(усиление может достигать 10 000). Так как мощность переменного тока, выделяемая в Rвыхможет быть больше, чем расходуемая в цепи эмиттера, то транзистор дает и усиление мощности. Эта усиленная мощность появляется за счет источника тока, включенного в цепь коллектора.
Из рассмотренного следует, что транзистор, подобно электронной лампе, дает усиление и напряжения и мощности. Если в лампе анодный ток управляется напряжением на сетке, то в транзисторе ток коллектора, соответствующий анодному току лампы, управляется напряжением на базе.
Принцип работы транзистора n-р-n-типа аналогичен рассмотренному выше, но роль дырок играют электроны. Существуют и другие типы транзисторов, так же как и другие схемы их включения. Благодаря своим преимуществам перед электронными лампами (малые габаритные размеры, большие к.п.д. и срок службы, отсутствие накаливаемого катода (поэтому потребление меньшей мощности), отсутствие необходимости в вакууме и т. д.) транзистор совершил революцию в области электронных средств связи и обеспечил создание быстродействующих ЭВМ с большим объемом памяти.
Задачи
31.1. Германиевый образец нагревают от 0 до 17°С. Принимая ширину запрещенной зоны кремния 0,72 эВ, определить, во сколько раз возрастет его удельная проводимость. [В 2,45 раза]
31.2. В чистый кремний введена небольшая примесь бора. Пользуясь Периодической системой Д. И. Менделеева, определить и объяснить тип проводимости примесного кремния.
31.3. Определить длину волны, при которой в примесном полупроводнике еще возбуждается фотопроводимость.
Дата добавления: 2015-02-13; просмотров: 858;