Закон взаимосвязи массы и энергии
Найдем кинетическую энергию релятивистской частицы. Раньше (§ 12) было показано, что приращение кинетической энергии материальной точки на элементарном перемещении равно работе силы на этом перемещении:
(40.1)
Учитывая, что dr = vdt, и подставив в (40.1) выражение (39.2), получаем
Преобразовав данное выражение с учетом того, что vdv = udu, и формулы (39.1), придем к выражению
(40.2)
т. е. приращение кинетической энергии частицы пропорционально приращению ее массы.
Так как кинетическая энергия покоящейся частицы равна нулю, а ее масса равна массе покоя т0, то, проинтегрировав (40.2), получим
(40.3)
или кинетическая энергия релятивистской частицы имеет вид
Выражение (40.4) при скоростях u ≪ c переходит в классическое:
(40.4)
(разлагая в ряд при v ≪ c, правомерно пренебречь членами второго порядка малости).
А. Эйнштейн обобщил положение (40.2), предположив, что оно справедливо не только для кинетической энергии частицы, но и для полной энергии, а именно любое изменение массы Д/я сопровождается изменением полной энергии частицы,
(40.5)
Отсюда А. Эйнштейн пришел к универсальной зависимости между полной энергией тела Е и его массой т:
(40.6)
Уравнение (40.6), равно как и (40.5), выражает фундаментальный закон природы — за кон взаимосвязи (пропорциональности) массы и энергии: полная энергия системы равна произведению ее массы на квадрат скорости света в вакууме. Отметим, что в полную энергию Е не входит потенциальная энергия тела во внешнем силовом поле. Закон (40.6) можно, учитывая выражение (40.3), записать в виде
откуда следует, что покоящееся тело (Г=0) также обладает энергией
называемой энергией покоя. В классической механике энергия покоя £о не учитывается, считая, что при u = 0 энергия покоящегося тела равна нулю.
В силу однородности времени (см. § 13) в релятивистской механике, как и в классической, выполняется закон сохранения энергии: полная энергия замкнутой системы сохраняется, т. е. не изменяется с течением времени.
Из формул (40.6) и (39.4) найдем релятивистское соотношение между полной энергией и импульсом частицы:
(40.7)
Возвращаясь к уравнению (40.6), отметим еще раз, что оно имеет универсальный характер. Оно применимо ко всем формам энергии, т. е. можно утверждать, что с энергией, какой бы формы она ни была, связана масса
(40.8)
и, наоборот, со всякой массой связана энергия (40.6).
Чтобы охарактеризовать прочность связи и устойчивость системы каких-либо частиц (например, атомного ядра как системы из протонов и нейтронов), вводят понятие энергии связи. Энергия свози системы равна работе, которую необходимо затратить, чтобы разложить эту систему на составные части (например, атомное ядро — на протоны и нейтроны). Энергия связи системы
(40.9)
где m0i, — масса покоя i-й частицы в свободном состоянии; М0 — масса покоя системы, состоящей из n частиц.
Закон взаимосвязи (пропорциональности) массы и энергии блестяще подтвержден экспериментом о выделении энергии при протекании ядерных реакций. Он широко используется для расчета энергетических эффектов при ядерных реакциях и превращениях элементарных частиц.
Рассматривая выводы специальной теории относительности, видим, что она, как, впрочем, и любые крупные открытия, потребовала пересмотра многих установившихся и ставших привычными представлений. Масса тела не остается постоянной величиной, а зависит от скорости тела; длина тел и длительность событий не являются абсолютными величинами, а носят относительный характер; наконец, масса и энергия оказались связанными друг с другом, хотя они и являются качественно различными свойствами материи.
Основной вывод теории относительности сводится к тому, что пространство и время органически взаимосвязаны и образуют единую форму существования материи — пространство-время. Только поэтому пространственно-временной интервал между двумя событиями является абсолютным, в то время как пространственные и временные промежутки между этими событиями относительны. Следовательно, вытекающие из преобразований Лоренца следствия являются выражением объективно существующих пространственно-временных соотношений движущейся материи.
Задачи
7.1. Определить собственную длину стержня (длину, измеренную в системе, относительно которой стержень покоится), если в лабораторной системе (системе отсчета, связанной с измерительными приборами) его скорость v = 0,8 с, длина l = 1 м и угол между ним и направлением движения q=30°.
[ м]
7.2. Собственное время жизни частицы отличается на 1.5% от времени жизни по неподвижным часам. Определить b=u/с. [0,172]
7.3.Тело, масса покоя которого 2 кг, движется со скоростью 200 Мм/с в системе К', перемещающейся относительно системы K со скоростью 200 Мм/с. Определить: 1) скорость тела относительно системы К; 2) его массу в этой системе. [1) 277 Мм/с; 2) 52кг]
7.4. Воспользовавшись тем, что интервал — инвариантная величина по отношенною к преобразованиям координат, определить расстояние, которое пролетел p-мезон с момента рождения до распада, если время его жизни в этой системе отсчета Dt = 5 мкс, а собственное время жизни (время, отсчитанное no-часам, движущимся вместе с телом) Dt0 =«2,2 мкс. [1.35 км]
7.5. Определить скорость, при которой релятивистский импульс частицы превышает ее ньютонов ский импульс в пять раз. [0,98 с]
7.6. Определить скорость, полученную электроном, если он прошел ускоряющую разность потенциалов 1,2 МэВ. [2,86 Мм/с]
7.7. Определить релятивистский импульс электрона, кинетическая энергия которого 1 ГэВ. [5,34 10-19 H с]
Дата добавления: 2015-02-13; просмотров: 967;