Мініатюра: “Жабяче серце або дослід Станіуса”.
Дійові особи: Жаба – хтива царівна з потворною пикою та маленькими зеленими грудьми; Дослідник: черговий збочений студент; Станіус – гарячий латиш брат маркіза де Сада; Рінгер – енуретичний коханець барона Захер-Мазоха. Тишина, пара. В кабінет вривається Дослідник, дико розмахуючи скальпелем та Жабою, волає: “О зрадницька потворо, о як могла розбити серце ти моє, о де взялась та злая банабацька сила, що заставляє битись серденько твоє, а може глянуть!?”. Бідкаючись, він вправно вводить ножиці між щелепами Жабі. Жаба: “Ква-а-а-а-о-о-о-так”. Дослідник: “Ну-ну”. Жаба: “Ще!!!”. Дослідник: “Ну ось і все”, – децеребрує та розтинає їй пузо. Тиша, в кабінет вбігає Рінгер та поливає своїм розчином жабяче нутро. Серце Жаби знову б’ється, вона хтиво всміхається. Дослідник накладає першу лігатуру між венозною пазухою та передсердям: “Здохни”. Знову влітає Рінгер та з криком “Замочу” робить свою мокру справу. Серце відроджується, але ритм вже не той, сили покидають принцесу... Після накладання третьої лігатури на нижню третину шлуночка у Рінгера настає зневоднення, Дослідник сходить з глузду та робить собі харакірі, перед очима Жаби під спів янголів проносяться найщасливіші моменти життя. Двері ногою вибиває Станіус з цигаркою в роті та кричить “ПЕ-РЕ-РВА-А”.
Завіса.
3. Потенціал дії атипових кардіоміоцитів сино-атріального вузла, механізми походження, фізіологічна роль.
Природа автоматії полягає в наявності в А-КМЦ специфічних потенціал-чутливих каналів. Ці канали змінюють свій стан, коли в ході реполяризації мембрани КМЦ (кінець попереднього ПД) мембранний потенціал досягає 60 mV. При цьому в мембрані А-КМЦ:
- відкриваються повільні кальцієві канали – йони кальцію за градієнтом концентрації починають повільно входити в клітини;
- відкривається повільні натрієві канали – йони натрію за градієнтом концентрації починають повільно входити в клітини;
- закриваються калієві канали – зменшується вихід калію з клітини за градієнтом концентрації.
Така зміна стану каналів мембран А-КМЦ веде до повільного зменшення мембранного потенціалу (деполяризація мембрани). Ця деполяризація виникає без дії зовнішнього подразника (автоматично), і коли вона досягає критичного рівня (– 45 mV), виникає пік ПД. Ця частина змін в часі мембранного потенціалу клітини, що володіє автоматією, є специфічною для неї і носить назву фази повільної діастолічної деполяризації, або спонтанної деполяризації.
Частота, з якою центр автоматії генерує ПД, залежить від двох факторів:
1) величина порогового потенціалу; чим вона більша, тим частота менша; в звичайних умовах під впливом механізмів регуляції частіше змінюється рівень мембранного потенціалу спокою Ù зміна порогового потенціалу Ù зміна частоти генерації імпульсів збудження водієм ритму Ù зміна частоти серцевих скорочень;
2) швидкість повільної діастолічної деполяризації (ПДД); механізми регуляції змінюють проникність відповідних каналів Ù зміна швидкості ПДД Ù зміна частоти генерації ПД водієм ритма серця Ù зміна ЧСС.
Центри автоматії другого та наступних порядків генерують імпульси збудження рідше, ніж водій ритма (пазухово-передсердний вузол), перш за все тому, що у них менша швидкість ПДД.
Дуже рідко (в умовах патології) здатність до автоматії проявляється в Т-КМЦ (з яких побудований робочий міокард шлуночків та передсердь). Це відбувається при різкому зменшенні рівня мембранного потенціалу спокою цих клітин (до –60 mV, як в А-КМЦ; в звичайних умовах рівень їх потенціалу спокою дорівнює –90 mV). Такі центри автоматії носять назву ектопічних.
4. Провідна система серця. Послідовність і швидкість проведення збудження по серцю.
В звичайних умовах послідовність руху збудження по структурах серця така: пазухово-передсердний вузол Ù робочий міокард передсердь Ù передсердно-шлуночковий вузол Ù пучок Гіса Ù ніжки пучка Гіса Ù
волокна Пуркіньє Ù робочий міокард шлуночків.
Швидкість проведення збудження по структурах серця різна.
Вона складає:
- робочий міокард передсердь та шлуночків – біля 1 м/с;
- пучок Гіса, його ніжки, волокна Пуркіньє – 2-5 м/с.
Тобто, швидкість велика і це має велике значення, так як забезпечує синхронність скорочень міокарду передсердь; міокарду шлуночків (для досягнення останнього результату існує провідна ситема шлуночків серця – пучок Гіса, його ніжки, волокна Пуркіньє; наявність спеціальної провідної системи шлуночків зумовлено його великою масою).
Чинниками, що впливають на швидкість проведення збудження по м’язовим волокнам є: діаметр волокон, амплітуда ПД, величина порогу деполяризації, швидкість розвитку піку ПД, наявність нексусів між міокардіоцитами – вони мають низький опір, що сприяє швидкій передачі ПД з одного КМЦ на другий і збільшенню швидкості проведення збудження.
Причинами великої швидкості проведення збудження по провідній системі серця є:
- великий діаметр волокон;
- наявність нексусів;
- достатня амплітуда ПД (близько 100 мВ).
Дещо менший діаметр Т-КМЦ та гірше розвинені нексуси є причиною меншої швидкості проведення збудження по ним.
В ділянці передсердно-шлуночкового вузла має місце затримка проведення збудження, котра виникає внаслідок значного зменшення швидкості проведення (2-5 м/с). Наявність атріовентрикулярної затримки забезпечує послідовне скорочення передсердь та шлуночків (спочатку передсердя, а через 0,1 с – шлуночки).
Причини малої швидкості проведення збудження по волокнам передсердно-шлуночкового вузла є:
- малий діаметр волокон;
- відсутність нексусів;
- невелика амплітуда ПД (60-70 мВ);
- мала швидкість розвитку ПД (в цих клітинах розвиток ПД має не натрієву, а кальцієву природу, тому розвивається повільно).
5. Потенціал дії типових кардіоміоцитів шлуночків, механізми походження, фізіологічна роль. Співвідношення у часі ПД одиночного скороченння міокарда.
Типові кардіоміоцити (Т-КМЦ) не мають властивості автоматії і генерують ПД під впливом подразника (ПД, що йде від водія ритму серця). ПД в Т-КМЦ має особливості, а саме, він дуже тривалий – в шлуночках до 300 мс (в нервових волокнах – 1 мс, в скелетних м'язах – 2-5 мс).
Фази ПД Т-КМЦ:
1. Фаза швидкої деполяризації; початкова фаза її пов’язана із швидким входом йонів натрію, потім додається вхід йонів кальцію.
2. Фаза швидкої початкової реполяризації – дуже короткочасна. Пов’язана з виходом із Т-КМЦ йонів калію та вхід хлору
3. Фаза повільної реполяризації (плато) під час цієї фази мембранний потенціал Т-КМЦ мало змінюється, оскільки вихід йонів калію зрівноважується входом йонів кальцію.
4. Фаза швидкої реполяризації – пов’язана із швидким виходом із клітин калію – відновлення вихідного рівня мембранного потенціалу.
Таким чином, велика тривалість ПД пов’язана з наявністю фази плато. Вона в свою чергу виникає внаслідок наявності в Т-КМЦ специфічних потенціал-чутливих кальцій-натрієвих каналів. Ці канали відкриваються під час швидкої деполяризації, коли мембранний потенціал зменшується до рівня (30-40 мВ). Ці канали повільно відкриваються, зате довго лишаються відкритими. Через них довго здійснюється вхід в Т-КМЦ йонів кальцію (значно менше – натрію) за градієнтом концентрації.
6. Періоди рефрактерності під час розвитку ПД типових кардіоміоцитів, їх значення.
Значення великої тривалості ПД Т-КМЦ стає зрозумілим, якщо співставити його в часі з графіком зміни збудливості Т-КМЦ при збудженні з графіком поодинокого скорочення міокарда:
ПД Т-КМЦ тривалий через наявність фази плато.
Довготривалий ПД є причиною тривалої абсолютної рефрактерної фази (АР) – час протягом якого Т-КМЦ повністю незбудливі.
АР відповідає розвитку латентного періоду поодинокого м’язевого скорочення, періоду укорочення та значної частини періоду розслаблення.
1. Латентний період.
2. Період укорочення.
3. Період розслаблення.
Завдяки такому співвідношенню у часі фаз збудливості та періодів поодинокого скорочення міокарда досягається:
- неможливість виникнення в міокарді тетанічних скорочень; наступний цикл збудження (і скорочення) стає можливим тільки в фазі відносної рефрактерності, коли міокард закінчив своє скорочення і в значній мірі розслабився. Це дуже важливо, так як для виконання насосної функції серцем необхідно, щоб воно наповнилось кров’ю під час розслаблення. Тетанічне скорочення унеможливлювало б нагнітальну функцію серця;
- неможливість патологічної рециркуляції збудження по структурах серця (тривала фаза абсолютної рефрактерності не дає можливості збудженню повернутись туди, де воно було деякий час тому назад).
7. Спряження збудження і скорочення в міокарді. Механізми скорочення і розслаблення міокарду.
Спряження (зв’язок) збудження і скорочення в міокарді принципово проходить так само, як і в скелетних м’язах. Тобто, ПД викликає скорочення таким чином:
ПД поширюється по мембрані Т-КМЦ, в тому числі і по мембрані Т-трубочок Ù відкриття кальцієвих каналів саркоплазматичного ретикулума (СПР) Ù вихід йонів кальцію із СПР Ù підвищення концентрації йонів кальцію в міоплазмі з 10-8 до 10-5 моль/л Ù дифузія йонів кальцію до скоротливих білків (протофібрил) Ù взаємодія з регуляторними білками (з тропоніном) Ù зміна третинної структури тропоніну та тропоміозину Ù відкриття активних центрів актину Ù взаємодія активних головок міозину з активними центрами актину Ù скорочення міокарду.
Необхідно підкреслити, що сила серцевих скорочень (ССС) залежить від кількості актоміозинових містків, які утворюються при скороченні.
Особливостями процесу спряження збудження та скорочення в міокарді є:
- необхідність для виходу йонів кальцію із СПР (кальцієвого залпу) входу йонів кальцію із міжклітинної рідини. Цей вхід проходить під час фази плато ПД;
- наявність кількісного взаємозв’язку між входом кальцію в клітину під час фази плато ПД і його виходу із СПР, а отже, і ССС (регуляторні механізми, наприклад, можуть підвищувати кількість повільних кальцієвих каналів, через які проходить вхід йонів кальцію під час фази плато ПД Ù підвищення входу кальцію під час фази плато ПД Ù посилення виходу йонів Сa+ із СПР Ù підвищення кількості відкритих активних центрів актину Ù підвищення кількості акто-міозинових містків Ù посилення ССС).
Стан кальцієвих каналів можуть змінювати лікарі, призначаючи хворим їх блокатори (варапаміл) Ù зменшення входу йонів кальцію в Т-КМЦ при їх збудженні Ù зменшення ССС.
Механізми розслаблення міокарду полягає у видаленні із міоплазми йонів кальцію, які надійшли туди під час “кальцієвого залпу”. Цей результат досягається завдяки:
- активації кальцієвих насосів повздовжніх трубочок СПР (із затратами енергії АТФ);
- активації кальцієвих насосів зовнішньої мембрани Т-КМЦ (із затратами енергії АТФ);
- роботі натрій-кальцієвого йонообмінного механізму; цей механізм забезпечує транспорт в протилежному напрямку через зовнішню клітинну мембрану йонів Na+ (в клітину) і йонів Сa+ (з клітини). Йони Na+ входять в клітину за градієнтом концентрації, який створюється натрій-калієвим насосом (працює з затратами енергії АТФ). Спряжений з входом йонів Na+ вихід йонів Сa+ знижує його концентрацію в клітині та сприяє розслабленню міокарда.
8. Векторна теорія формування ЕКГ. ЕКГ, відведення. Походження зубців, сегментів, інтервалів ЕКГ.
При збудженні та реполяризації серця виникає електричне поле, яке можна зареєструвати на поверхні тіла. При цьому між різними точками тіла створюється різниця потенціалів, яка змінюється у відповідності з коливаннями величини та напрямку цього електричного поля. Крива змін цієї різниці потенціалів в часі називається електрокардіограмою (ЕКГ). Таким чином, ЕКГ відображає збудження серця, а не його скорочення.
Для розуміння генезу ЕКГ необхідно знати наступні факти:
1. Загальне електричне поле серця утворюється в результаті сумації полів чисельних окремих волокон серця;
2. Кожне збуджене волокно є диполем, що містить в собі елементарний дипольний вектор певної величини та напрямку;
3. Інтегральний вектор в кожен момент процесу збудження є результуючою окремих векторів;
4. Величина потенціалу, що вимірюється в точці, яка віддалена від джерела, залежить головним чином від величини інтегрального вектора і від кута між напрямком цього вектора та віссю відведення.
Відведення ЕКГ. Розрізняють біполярнітауніполярнівідведення. Для отримання уніполярного відведення накладають активний електрод на яку-небудь точку поверхні тіла і реєструють зміну потенціалу під цим електродом по відношенню до так званого рефрактерногоелектрода. Можна рахувати, що референтний електрод поміщений в “нульовій точці” диполя, тобто між позитивним та негативним полюсами.
До біполярних відведень відносяться: стандартні відведення Ейнтховена (І, ІІ, ІІІ); грудні відведення за Небом (D, A, I).
До уніполярних відведень відносяться: посилені відведення по Гольденбергу (aVR, aVL, aVF); прекардіальні відведення за Вільсоном (V1 – V6).
Походження зубців, сегментів та інтервалів ЕКГ:
Сегмент – відстань між двома зубцями. Інтервал – сукупність зубця та сегмента.
Зубець Р – відображає виникнення та поширення збудження по передсердях;
Сегмент PQ – в цей час збудження поширюється по провідній системі серця;
Зубець Q – початок збудження шлуночків (деполяризація лівої поверхні міжшлуночкової перегородки);
Зубець R – поширення збудження через стінку шлуночків від ендокарда до епікарда;
Зубець S – кінець збудження шлуночків (деполяризація правого шлуночка в області основи легеневого стовбура).
Поширення збудження по шлуночках (комплекс QRS) співпадає з реполяризацією передсердь;
Зубець Т – відображає реполяризацію шлуночків.
9. Серцевий цикл, його фази, їх фізіологічна роль. Показники насосної функції серця і методи їх дослідження.
Серце в системі кровообігу виконує функцію насоса. Його будова повністю пристосована для виконання функцій насоса:
Таким чином, насосну функцію виконують, перш за все, шлуночки серця. Головна функція передсердь полягає в акумулюванні (накопиченні) крові при закритих передсердно-шлуночкових клапанах (кровообіг в судинах безупинний!).
Серце як насос працює циклічно – мають місце ритмічне чергування систоли (скорочення) та діастоли (розслаблення) відділів серця. В стані спокою ЧСС = 75 в хвилину, тривалість серцевого циклу (СЦ) складає 0,8 с. Чергування систоли та діастоли різних відділів серця можна представити у вигляді схеми (одна клітинка = 0,1 с):
Загальна пауза – час протягом якого співпадає діастола передсердь та шлуночків.
Основна функція передсердь – резервуарна, тому їх серцевий цикл простий та складається лише із систоли та діастоли.
Шлуночки виконують насосну функцію та мають складну структуру СЦ.
Перед детальною характеристикою окремих фаз та періодів СЦ варто підкреслити, що причиною руху крові через порожнини серця, із порожнин в судини і т.д., причиною зміни положення клапанів серця є градієнт тиску, який виникає внаслідок скорочення та розслаблення відділів серця. Тому події, що відбуваються в серці під час СЦ ми будемо розглядати в такій послідовності: скорочення (розслаблення) серця Ù зміна тиску в його порожнинах Ù виникнення градієнтів тисків, які зумовлюють:
а) зміну положення клапанів;
б) рух крові.
Характеристика періодів і фаз СЦ:
NB Ù на прикладі ЛІВОГО СЕРЦЯ!!!
Початку нового СЦ передує загальна пауза. В її кінці тиск в шлуночку приблизно рівний 5 мм рт. ст., в передсерді він трішки вищий, а в венах тиск вищий, ніж в передсерді. При такому розподілі тиску мітральний клапан – відкритий; кров дуже повільно тече з передсердя в шлуночок, а із вен – в передсердя. Тиск в аорті вищий від діастолічного, тобто набагато вищий, ніж у шлуночку. Саме цей градієнт тиску тримає закритими півмісяцеві клапани.
СЦ починається з систоли передсердя. Її тривалість складає близько 0,1 с. Починається скорочення передсердя з м’язевих пучків, які охоплюють гирла вен; це попереджує рух крові по градієнту тиску із передсердя в вени, так як клапани тут відсутні. Тиск в передсерді в результаті його скорочення підвищується до 8 мм рт. ст. і внаслідок цього в шлуночок надходить остання порція крові, яка складає від 8% до 30% від всього об’єму крові, що надходить в шлуночок при його діастолі.
Вслід за систолою передсердя починається систола шлуночка,яка в загальному триває 0,33 с. Систола шлуночка складається з 2-ох періодів:
1. Період напруження (0,08 с):
а) фаза асинхронного (неодночасного) скорочення (0,05 с). Дана фаза приблизно відповідає тому періоду часу, протягом якого хвиля збудження поширюється по міокарду шлуночка: одні КМЦ при цьому скорочуються, інші (ще не збуджені) – розтягуються. Тому напруження міокарду шлуночка і тиск в ньому не змінюється Ù не відбувається рух крові через порожнини серця; не змінюється положення клапанів.
б) фаза ізометричного скорочення (0,03 с). ця фаза починається, коли в процес скорочення залучається більшість КМЦ шлуночка Ù підвищення тиску в його порожнині. Коли тиск стає трішки вищим, ніж в передсерді, закриваються мітральний клапан (фактично з цього і починається фаза). Шлуночок скорочуються при закритих клапанах. В стані спокою в шлуночку знаходиться близько 150 мл крові. Кров є рідиною, яка не піддається стисканню, тому скорочення при закритих клапанах не може супроводжуватись скороченням КМЦ – відбувається ізометричне скорочення – довжина КМЦ постійна, але підвищується напруження міокарду Ù ріст тиску в лівому шлуночку до рівня, трішки вищого ніж діастолічний. Тобто, ізометричне скорочення зумовлює дуже значне підвищення тиску (від 8 до 70-80 мм рт. ст.) за дуже короткий відрізок часу.
2. Період вигнання (0,25 с):
а) фаза швидкого вигнання(0,12 с) починається з відкриття півмісяцевих клапанів, яке відбувається, як тільки тиск в шлуночку стане трішки вищим, ніж в аорті. Шлуночок скорочуються і виганяє кров в судину. Під час даної фази спостерігається підвищення тиску в судинах (виганяється великий об’єм крові, більший, ніж відтікає на периферію Ù підвищення тиску) – до 130 – 140 мм рт. ст. в аорті.
б) фаза повільного вигнання (0,13 с), під час цієї фази вигнання продовжується, але шлуночок виганяє менший об’єм крові Ù відтік крові із аорти більший від її притоку Ù пониження тиску до 100 мм рт. ст.
Під час періоду вигнання шлуночки викидають близько 50% крові.
Діастола шлуночка (0,47 с) включає в себе:
1. Протодіастолічний період (0,04 с). Цей інтервал часу охоплює період від розслаблення шлуночка до закриття півмісяцевих клапанів. В результаті розслаблення шлуночка тиск в ньому починає знижуватись і стає дещо нижчим, ніж в аорті Ù кров за градієнтом тиску починає рухатись не тільки в периферичні судини, а й назад у шлуночок. Зворотній тік крові закриває півмісяцеві клапани.
2. Період ізометричного розслаблення шлуночка (0,08 с) – період розслаблення шлуночка при закритих клапанах. Під час цієї фази в шлуночку знаходиться 70 – 80 мл крові (кінцево-систолічний об’єм складає близько 50% від кінцево-діастолічного). КМЦ розслабляються без зміни довжини (ізометрично); але при цьому зменшується напруження міокарду і тиск в порожнині шлуночка (від 100 – 110 мм рт. ст. до 5 – 6 мм рт. ст., тобто стає трішки нижчим, ніж в передсерді). В результаті цього відкривається мітральний клапан і починається наступний період СЦ.
3. Період наповнення шлуночків серця кров’ю:
а) фаза швидкого наповнення (0,08 с) – шлуночок продовжує розслаблюватись, тиск в ньому продовжує знижуватись і в його порожнину надходить великий об’єм крові (близько 2/3 від загального об’єму, що надходить під час діастоли) за короткий інтервал часу. Тому ця фаза дуже важлива для нормальної насосної функції серця.
б) фаза повільного наповнення (0,17 с). Під час цієї фази продовжується повільний рух крові з вен в передсердя, а звідти – в шлуночок.
в) фаза наповнення, що пов’язана з систолою передсердь (0,1 с). В шлуночок надходить остання порція крові – 8% в стані спокою і до 30% при навантаженні (від загального об’єму, що надходить під час діастоли).
Процеси, що проходять в правому серці під час СЦ принципово не відрізняються від тих, що відбуваються в лівому серці. Але судини (артеріальні) легень відносяться до судин низького тиску. Діастолічний тиск в легеневому стовбурі складає 15 – 18 мм рт. ст., систолічний – 25 – 30 мм рт.ст. Цим пояснюються відмінності гемодинаміки правого серця від лівого.
Значення для гемодинаміки:
Систоли: серце (особливо шлуночки) розвиває напруження, що необхідне для вигнання і здійснює власне вигнання (тобто, виконує власне насосну функцію).
Діастоли: здійснюється наповнення порожнин серця кров’ю, що необхідне для подальшого його вигнання. Серце відпочиває, проходить відновлення ресурсів, енергетичних та пластичних, затрачених під час систоли.
При підвищенні ЧСС, СЦ скорочується та змінює свою структуру. Діастола скорочується більше, ніж систола; в діастолі найбільше скорочується фаза повільного наповнення шлуночків кров’ю (вона має найменше значення для гемодинаміки).
Дата добавления: 2015-01-29; просмотров: 2521;