Достоинства и недостатки векторной графики
Для эффективного применения векторной графики в творческой работе необходимо представлять себе ее достоинства и недостатки.
Достоинства
Одним из главных достоинств этого вида графики является возможность неограниченного масштабирования изображения без потери качества и практически без увеличения размеров исходного файла. Это связано с тем, что векторная графика содержит только описания объектов, формирующих изображения, а компьютер или устройство печати интерпретирует их необходимым образом.
Векторную графику значительно легче редактировать, поскольку готовое изображение не является «плоской» картинкой из пикселов, а составлено из объектов, которые могут накладываться друг на друга, перекрываться, оставаясь в то же время совершенно независимыми друг от друга.
Векторным программам свойственна высокая точность рисования (до сотой доли микрона).
Векторная графика экономна в плане объемов дискового пространства, необходимого для хранения изображений. Это связано с тем, что сохраняется не само изображение, а только некоторые основные данные (математическая формула объекта), используя которые программа всякий раз воссоздает изображение заново. Описание цветовых характеристик почти не увеличивает размер векторного файла.
Векторные изображения, как правило, занимают меньший объем памяти компьютера по сравнению с растровыми. Гораздо проще описать окружность радиусом 10 и центром в точке х = 20, у = 30, чем помнить все пикселы массива, соответствующего этой окружности.
Для векторных редакторов характерно прекрасное качество печати рисунков и отсутствие проблем с экспортом векторного изображения в растровое.
Недостатки
Практически невозможно осуществить экспорт изображения из растрового формата в векторный. Попробуйте, например, отсканировать герб России, а затем вырезать его на плоттере. И наоборот, обратное преобразование (то есть превращение векторного изображения в растровое) выполняется практически автоматически не только с помощью графических редакторов, но и буфера обмена Windows.
Векторная графика ограничена в чисто живописных средствах и не позволяет получать фотореалистичные изображения с тем же качеством, что и растровая. Причина в том, что здесь, в отличие от растровой графики, минимальной областью, закрашиваемой однородным цветом, является не один пиксел, а один объект. А размеры объекта по определению больше.
Векторный принцип описания изображения не позволяет автоматизировать ввод графической информации, как это делает сканер для растровой графики. К сожалению, не существует, например, векторных мониторов или векторных сканеров.
В векторной графике невозможно применение обширной библиотеки эффектов (фильтров), используемых при работе с растровыми изображениями.
Строго говоря, ни один современный профессиональный графический пакет не является чисто векторным или чисто растровым, а совмещает в себе элементы как того, так и другого вида графики. Например, векторный редактор CorelDRAW имеет как собственные, так и подключаемые (plug-ins) инструменты для редактирования растровых изображений, а в шестой версии растрового редактора Photoshop расширены инструментальные возможности для работы с векторными объектами.
Глава 5. Цветовые модели компьютерной графики
Для изучения способов представления цвета в компьютерных системах сначала рассмотрим некоторые общие аспекты.
5.1 Элементы цвета
Представьте себе, что перед вами лежит лист белой бумаги с нарисованным на нем зеленым квадратом. Вы не задавали себе вопроса, «Почему этот цвет зеленый?» Ответ на него кроется в физических и биологических представлениях о природе
Рис. 5.1. Основные участники процесса восприятия цвета
Для того чтобы «увидеть» цвет, нужны три вещи (рис. 5.1):
- источник света;
- объект;
- ваш глаз (приемник излучения).
Теперь можно перейти к оценке роли физических и биологических аспектов процесса восприятия цвета.
Первый аспект — физика. Свет попадает на квадрат и отражается.
Второй аспект — биология. Отраженный свет попадает в глаз человека и воздействует на светочувствительные клетки глаза, которые содержат два типа рецепторов: палочки (cones) и колбочки (staves). Колбочки активны только в темноте или в сумерках. При нормальном освещении мы воспринимаем цвет исключительно с помощью палочек трех разновидностей, каждая из которых чувствительна к определенному диапазону видимого спектра. В данном случае отраженный от объекта свет воздействует на палочки, чувствительные к зеленому цвету. Они передают соответствующие импульсы в мозг, который после их обработки и последующей интерпретации выдает сообщение: квадратный, зеленый.
Но вопросы по-прежнему остаются.
Что в действительности стимулирует колбочки?
Почему в данном случае происходит возбуждение только одного типа палочек, который чувствителен к зеленому цвету?
Ответы на них будут даны ниже.
5.1.1 Свет и цвет
Как уже было отмечено в рассмотренном выше примере, наличие света является непременным условием визуального восприятия всего цветового богатства окружающего нас мира. В то же время из курса элементарной физики большинству из вас известно, что белый свет вне зависимости от его источника — солнце, лампочка или экран монитора — в действительности представляет собой смесь цветов. Если пропустить луч белого света через простую призму, он разложится на цветной спектр. Цвета этого спектра, называемого видимым спектром света, условно
Рис. 5.2. Спектральный состав видимого цвета
классифицируют как красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. Любой из них, в свою очередь, представляет собой электромагнитное излучение, перекрывающее достаточно широкий диапазон длин волн видимого спектра (рис. 6.2). Для нашего глаза каждый кусочек этого видимого спектра обладает своими уникальными характеристиками, которые и называются цветом. Поскольку в видимом спектре содержатся миллионы цветов, то различие между двумя соседними цветами практически неощутимо.
Спектральный состав цвета можно представить в виде графика распределения энергии излучения по разным длинам волн. Та длина волны, на которую приходится максимальная интенсивность излучения, называется доминирующей. Именно она в значительной степени определяет окраску цвета, хотя основные параметры воспринимаемого нашим глазом цвета определяются результатом воздействия на него всего спектрального состава цвета.
Дата добавления: 2015-01-29; просмотров: 10144;