Т е о р и я м е т о д а. Рассмотрим движение тела по наклонной плоскости длиною (рис.1)

Рассмотрим движение тела по наклонной плоскости длиною (рис.1). Тело, скатываясь с наклонной плоскости, участвуют в поступательном и вращательном движениях.

рис.1. В точке А тело обладает запасом потенциальной энергии По закону сохранения энергии, по-тенциальная энергия уменьшается и переходит в кинетическую энергию. В точке В тело приобрело кинетическую энергию поступа-тельного движения и вращательного движения

По закону сохранения энергии (1)

где υ - линейная скорость, ω - угловая скорость тела, J – момент инерции тел, h - высота наклонной плоскости. Теоретическая скорость

υТ определяется из соотношения (1). Для этого угловая скорость заменяется линейной с учетом формулы , а момент инерции шара и цилиндра выражается формулами

После постановки w и Jш, Jц в уравнение (1), получаем расчётные формулы скорости шара и цилиндра

, (2)

Измерив высоту наклонной плоскости, вычисляем теоретические значения скоростей в точке В.

Экспериментальное определение скорости проводят так. В точке В тело имеет скорость υ, которая может быть представлена в виде двух компонент υх и υу – скорости в горизонтальном и вертикальном направлениях

Из законов поступательного движения находим

х = у = (3)

Время движения в обоих направлениях одинаково и равно (4)

Подставив время (4) в уравнение (3), получим выражение для экспериментальной скорости в точке В

(5)

а по найденному выражению скорости, окончательно находим время

(6)








Дата добавления: 2015-01-26; просмотров: 638;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.