Глава 4.3. Кинетика и термодинамика химических реакций.

Разрыв химических связей сопровождается поглощением определенного количества энергии (эндотермическая реакция), а образование связи – выделением энергии (экзотермическая реакция). В зависимости от соотношения этих количеств в результате химической реакции энергия выделяется или поглощается. Оба типа реакций являются идут в соответствии со вторым началом термодинамики для открытых систем. Экзотермические реакции порождают хаос, допуская утечку энергии в окружающую среду, но при этом понижают энтропию внутри системы, создавая новую более сложную структуру. Эндотермические реакции понижают энтропию в окружающей среде и за счет энергии взятой извне увеличивают хаос внутри системы.

Основными направлениями современной химии являются кинетика и термодинамика химических реакций, которые позволяют теоретически объяснить эффективность и скорость протекания реакций. В соответствии с господствующей теорией «соударения», эффективность и скорость реакции зависят от концентрации реагирующих веществ и кинетической энергии хаотичного движения их молекул. Однако высокая эффективность и скорость многих реакций имеет место и при низких концентрациях и пониженной температуре. В этом случае эффективность обеспечивается наличием в реакционной смеси катализатора - вещества, ускоряющего химическую реакцию, но не входящее в состав ее конечных продуктов. Например. Механизм действия катализатора К в реакции А+В=АВ можно схематически показать так: 1) А+К=АК; 2) АК.+В=АВ+К. При этом взаимодействие реагирующих веществ с катализаторами не обязательно имеет химическую природу. Эффективность реакций в живых клетках ограничена достаточно низкими температурами, связными с сохранением белковой структуры и низкими концентрациями реагирующих веществ, поэтому все клеточные реакции являются каталитическими. Роль катализаторов большинства реакций в живых клетках играют белки - ферменты. В основе механизма работы многих ферментов лежит соответствие его пространственной структуры и пространственных структур реагирующих веществ по принципу «ключа» - «замочной скважины». Как правило, ферменты являются высокоспецифичными и обеспечивают только одну или несколько однотипных реакций.

Все химические реакции делятся на два типа: обратимые и необратимые. Необратимые реакции протекают только в одном направлении – образование продуктов реакции и идут до полного

расходования хотя бы одного из реагирующих веществ.

В ходе обратимых реакций ни одно из реагирующих веществ не расходуется полностью. Обратимыми называют реакции, которые одновременно протекают в прямом и обратном направлении.

Состояние обратимой реакции, при котором скорость прямой реакции равна скорости обратной реакции, называется химическим равновесием. В равновесном состоянии прямая и обратная реакции не прекращаются. Но так как их скорости при этом равны, то видимых изменений в системе не происходит: концентрации всех реагирующих веществ остаются постоянными. Изучение термодинамики обратимых и необратимых химических реакций показало, что динамическое равновесие обратимых реакций может быть смещено, и направление этого смещения определяется принципом французского ученого Ле-Шателье. Если на систему, находящуюся в состоянии динамического равновесия оказать внешнее воздействие (изменить концентрацию, температуру, давление), то равновесие смещается в сторону той реакции, которая противодействует этому воздействию. На этом принципе базируется саморегуляция равновесия не только химических реакций, но и любых других открытых систем.

Во многих химических реакциях сначала образуется небольшое вещество активных атомов или свободных радикалов, быстро реагирующих с молекулами исходных веществ, затем они снова образуются так, что их концентрация не меняется. Получается, что одна такая частица может вызвать цепь повторяющихся неразветвленных и разветвленных реакций (цепных реакций).

Кинетика и термодинамика различных типов химических реакций легли в основу таких направлений современной химии, как химическая эволюция и самоуправляемые сложные химические реакции. Создавая комплекс определенных физических условий, источников энергии и катализаторов, можно добиться того, что смесь определенных простых веществ путем последовательности неконтролируемых человеком химических реакций с образованием промежуточных соединений, придет к созданию нужного нам конечного продукта. Таким образом, в условиях ультрафиолетового облучения периодических электрических разрядов, из смеси водорода, аммиака, метана, окиси углерода, углекислого газа, сероводорода и минимальных количеств кислорода, удалось получить самопроизвольный синтез аминокислот, сахаров, азотистых оснований и более сложных органических соединений. Например - предшественники ферментов и хлорофилл растений. Все это в принципе доказывает возможность появления сложных органических соединений из неорганических простых веществ путем самопроизвольной химической эволюции.

 








Дата добавления: 2015-01-21; просмотров: 1126;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.