Интерфейс RS-485

Интерфейс RS-485, новое обозначение – EIA/TIA-485, один из наиболее распространенных стандартов физического уровня связи. Физический уровень – это первый уровень модели взаимосвязи открытых систем. Характеристики интерфейса приведены в табл.2.4.

 

Таблица 2.4. Стандартные параметры интерфейса RS-485

Допустимое число передатчиков / приемников 32 / 32
Максимальная длина кабеля 1200 м
Максимальная скорость связи 10 Мбит/с
Диапазон напряжений "1" передатчика +1,5...+6 В
Диапазон напряжений "0" передатчика -1,5...-6 В
Диапазон синфазного напряжения передатчика -1...+3 В
Допустимый диапазон напряжений приемника -7...+12 В
Пороговый диапазон чувствительности приемника ±200 мВ
Максимальный ток короткого замыкания драйвера 250 мА
Допустимое сопротивление нагрузки передатчика 54 Ом
Входное сопротивление приемника 12 кОм
Максимальное время нарастания сигнала передатчика 30% бита

 

Если необходимо организовать связь на расстоянии большем 1200 м или подключить больше устройств, чем допускает нагрузочная способность передатчика, применяют специальные повторители (репитеры).

Сеть, построенная на интерфейсе RS-485, представляет собой приемопередатчики, соединенные при помощи витой пары. В основе интерфейса RS-485 лежит принцип дифференциальной или балансной передачи данных. Суть его заключается в передаче одного сигнала по двум проводам. Причем по одному проводу (условно A) идет оригинальный сигнал, а по другому (условно B) – его инверсная копия. Другими словами, если на одном проводе «1», то на другом «0» и наоборот. Таким образом, между двумя проводами витой пары всегда есть разность потенциалов: при «1» она положительна, при «0» – отрицательна (рис. 2.12).

 

Рис. 2.12. Электрический сигнал интерфейса RS-485

 

Именно этой разностью потенциалов и передается сигнал. Такой способ передачи обеспечивает высокую устойчивость к синфазной помехе. Синфазной называют помеху, действующую на оба провода линии одинаково. К примеру, электромагнитная волна, проходя через участок линии связи, наводит в обоих проводах потенциал. Если сигнал передается потенциалом в одном проводе относительно общего, как в RS-232, то наводка на этот провод может исказить сигнал относительно хорошо поглощающего наводки общего («земли»). Кроме того, на сопротивлении длинного общего провода будет падать разность потенциалов земель - дополнительный источник искажений. А при дифференциальной передаче искажения не происходит. В самом деле, если два провода пролегают близко друг к другу, да еще перевиты, то наводка на оба провода одинакова. Потенциал в обоих одинаково нагруженных проводах изменяется одинаково, при этом информативная разность потенциалов остается без изменений.

Основой интерфейса является универсальный асинхронный приемопередатчик (UART), который состоит из приемника (Receiver) и передатчика (Transmitter). Кроме того, в состав UART входят: тактовый генератор связи или бодрейт-генератор, управляющие регистры, статусные регистры, буферы и сдвиговые регистры приемника и передатчика. Генератор задает тактовую частоту приемо-передатчика для данной скорости связи. Управляющие регистры задают режим работы последовательного порта и его прерываний. В статусном регистре устанавливаются флаги по различным событиям. В буфер приемника попадает принятый символ, в буфер передатчика помещается передаваемый. Для передачи в последовательный порт битов посылаемого кадра используется сдвиговый регистр передатчика. Сдвиговый регистр приемника по биту накапливает принимаемые из порта данные. По различным событиям устанавливаются флаги и генерируются прерывания, например, завершение приема или отправки кадра, освобождение буфера, наличие различных ошибок.

UART является полнодуплексным интерфейсом, поэтому приемник и передатчик могут работать одновременно и независимо друг от друга. Порт приемника обозначают Rx, передатчика – Tx. Последовательной установкой уровней на этих портах относительно общего провода («земли») и передается информация. По умолчанию передатчик устанавливает на линии единичный уровень. Передача начинается посылкой бита с нулевым уровнем (старт-бита), затем идут биты данных младшим битом вперед (низкий уровень – «0», высокий уровень – «1»), завершается посылка передачей одного или двух битов с единичным уровнем (стоп-битов). Пример электрического сигнала кадра посылки приведен на рис. 2.13.

 

Рис. 2.13. Формат кадра посылки

 

Формат кадра определяет число стоп-битов (1 или 2), число бит данных (8 или 9), а также назначение девятого бита данных. Все это зависит от типа контроллера.

Перед началом связи между двумя устройствами необходимо настроить их приемопередатчики на одинаковую скорость связи и формат кадра.

Скорость связи или бодрейт (baud rate) измеряется в числе передаваемых бит в секунду, включая старт и стоп-биты. Задается эта скорость в бодрейт-генераторе делением системной частоты на задаваемый коэффициент. Типичный диапазон скоростей: 2400÷115200 бод.

Приемник и передатчик тактируются, как правило, с 16-кратной частотой относительно бодрейта. Это нужно для сэмплирования сигнала. Приемник, поймав падающий фронт старт-бита, отсчитывает несколько тактов и следующие три такта считывает (семплирует) порт Rx. Это как раз середина старт-бита. Если большинство значений семплов – «0», старт-бит считается состоявшимся, иначе приемник принимает его за шум и ждет следующего падающего фронта. После удачного определения старт-бита, приемник точно также семплирует серединки битов данных и по большинству семплов считает бит «0» или «1», записывая их в сдвиговый регистр. Стоп-биты тоже семплируются, и если уровень стоп-бита не «1» – UART определяет ошибку кадра и устанавливает соответствующий флаг в управляющем регистре (рис. 2.14).

 

Рис. 2.14. Пример чтения бита

 

Аппаратная реализация выходного устройства интерфейса – микросхемы приемопередатчиков с дифференциальными входами и выходами к линии связи и цифровыми портами к портам UART контроллера.

RS-485 – полудуплексный интерфейс. Прием и передача идут по одной паре проводов с разделением по времени (рис. 2.15). В сети может быть много передатчиков, так как они могут отключаться в режиме приема.

 

Рис. 2.15. Приемопередатчик RS-485

 

Обозначения на рис. 2.15: D (driver) – передатчик; R (receiver) – приемник; DI (driver input) – цифровой вход передатчика; RO (receiver output) – цифровой выход приемника; DE (driver enable) – разрешение работы передатчика; RE (receiver enable) – разрешение работы приемника; A – прямой дифференциальный вход/выход; B – инверсный дифференциальный вход/выход.

Цифровой выход приемника (RO) подключается к порту приемника UART (Rx). Цифровой вход передатчика (DI) к порту передатчика UART (Tx). Поскольку на дифференциальной стороне приемник и передатчик соединены, то во время приема нужно отключать передатчик, а во время передачи - приемник. Для этого служат управляющие входы – разрешение приемника (RE) и разрешения передатчика (DE). Так как вход RE инверсный, то его можно соединить с DE и переключать приемник и передатчик одним сигналом с любого порта контроллера. При уровне «0» – работа на прием, при «1» – на передачу (рис. 2.15).

Приемник, получая на дифференциальных входах (AB) разность потенциалов (UAB) переводит их в цифровой сигнал на выходе RO. Обычно порог чувствительности приемника составляет ± 200 мВ. То есть, когда UAB > +200 мВ – приемник определяет «1», когда UAB < –200 мВ – приемник определяет «0». Если разность потенциалов в линии настолько мала, что не выходит за пороговые значения - правильное распознавание сигнала не гарантируется. Кроме того, в линии могут быть и не синфазные помехи, которые исказят столь слабый сигнал.

Все устройства подключаются к одной витой паре одинаково: прямые выходы (A) к одному проводу, инверсные (B) – к другому.

Пример подключения приемопередатчика RS-485 к микроконтроллеру показан на рис. 2.16.

 

Рис. 2.16. Подключение приемопередатчика к микроконтроллеру

 

Входное сопротивление приемника со стороны линии (RAB) обычно составляет 12 кОм. Так как мощность передатчика имеет определенное значение, это создает ограничение на количество приемников, подключенных к линии. Согласно спецификации RS-485 с учетом согласующих резисторов передатчик может вести до 32 приемников. Однако есть ряд микросхем с повышенным входным сопротивлением, что позволяет подключить к линии значительно больше 32 устройств.

При больших расстояниях между устройствами, связанными по витой паре и высоких скоростях передачи начинают проявляться так называемые эффекты длинных линий. Причина этому - конечность скорости распространения электромагнитных волн в проводниках. Скорость эта существенно меньше скорости света в вакууме и составляет немногим больше 200 мм/нс. Электрический сигнал имеет также свойство отражаться от открытых концов линии передачи и ее ответвлений. Грубая аналогия - желоб, наполненный водой. Волна, созданная в одном конце, идет по желобу и, отразившись от стенки в конце, идет обратно, отражается опять и так далее, пока не затухнет. Для коротких линий и малых скоростей передачи этот процесс происходит так быстро, что остается незамеченным. Однако, время реакции приемников – десятки или сотни наносекунд. В таком масштабе времени несколько десятков метров электрический сигнал проходит отнюдь не мгновенно. И если расстояние достаточно большое, фронт сигнала, отразившийся в конце линии и вернувшийся обратно, может исказить текущий или следующий сигнал. В таких случаях нужно каким-то образом подавлять эффект отражения.

У любой линии связи есть такой параметр, как волновое сопротивление Zв. Оно зависит от характеристик используемого кабеля, но не от длины. Для обычно применяемых в линиях связи витых пар Zв = 120 Ом. Оказывается, что если на удаленном конце линии, между проводниками витой пары включить резистор с номиналом равным волновому сопротивлению линии, то электромагнитная волна, дошедшая до «тупика» поглощается на таком резисторе. Отсюда его названия - согласующий резистор или «терминатор».

Большой минус согласования на резисторах - повышенное потребление тока от передатчика, ведь в линию включается низкоомная нагрузка. Поэтому рекомендуется включать передатчик только на время отправки посылки. Есть способы уменьшить потребление тока, включая последовательно с согласующим резистором конденсатор для развязки по постоянному току. Однако, такой способ имеет свои недостатки. Для коротких линий (несколько десятков метров) и низких скоростей (меньше 38400 бод) согласование можно вообще не делать.

Эффект отражения и необходимость правильного согласования накладывают ограничения на конфигурацию линии связи.

Линия связи должна представлять собой один кабель витой пары. К этому кабелю присоединяются все приемники и передатчики. Расстояние от линии до микросхем интерфейса RS-485 должно быть как можно короче, так как длинные ответвления вносят рассогласование и вызывают отражения.

В оба наиболее удаленных конца кабеля (Zв = 120 Ом) включают согласующие резисторы Rt по 120 Ом (0,25 Вт). Если в системе только один передатчик и он находится в конце линии, то достаточно одного согласующего резистора на противоположном конце линии. Пример линии связи интерфейса RS-485 приведен на рис. 2.17.

 

Рис. 2.17. Линия связи интерфейса RS-485

 

2.3.1.1. Автоматический преобразователь интерфейсов USB/RS-485 ОВЕН АС4

Устройство предназначено для взаимного преобразования сигналов интерфейсов USB и RS-485. Позволяет подключать к промышленной сети RS-485 персональный компьютер, имеющий USB-порт

Обеспечивает автоматическое определение направления передачи данных, гальваническую изоляцию входов и создание виртуального COM-порта при подключении прибора к ПК, что позволяет без дополнительной адаптации использовать информационные системы (SCADA, конфигураторы), работающие с аппаратным COM-портом. Питание преобразователя осуществляется от шины USB.

 

2.18.

 

При построении сети с использованием интерфейса связи RS-485 к линии, выполненной витой парой, может быть подключено до 32 приборов, а при использовании усилителя сигнала – до 256 приборов.

АС4 имеет встроенные согласующие резисторы сопротивлением 100 и 120 Ом.

Подключение АС4 к ПК производится с помощью стандартного USB-кабеля.

 

Таблица 2.5. Технические характеристики преобразователя интерфейсов USBRS-485

Питание
Постоянное напряжение (на шине USB) 4,75…5,25 В
Потребляемая мощность не более 0,5 ВА
Допустимое напряжение гальванической изоляции входов не менее 1500 В
Интерфейс USB
Стандарт интерфейса USB 2.0
Длина линии связи с ЭВМ не более 3 м
Скорость обмена данными до 115200 бит/с
Используемые линии передачи данных А (D+), В (D–)
Интерфейс RS-485
Стандарт интерфейса TIA/EIA-485
Длина линии связи с внешним устройством не более 1200 м
Количество приборов в сети: – без использования усилителя сигнала – с использованием усилителя сигнала   не более 32 не более 256
Используемые линии передачи данных А (D+), В (D–)

 

2.3.2. Интерфейс «Токовая петля»

Интерфейс предназначен для передачи информации между устройствами с радиальной последовательной связью (ИРПС) и обеспечивает единые способы обмена информацией для различных устройств.

Подключение устройств осуществляется радиально посредством кабеля. Допускается использование в качестве соединительных линий выделенных пар в многожильных телефонных кабелях.

Интерфейс обеспечивает асинхронную передачу постоянным током (токовая петля) по 4-проводной дуплексной связи. В технически обоснованных случаях допустима и цепь взаимосвязи, указывающая состояние устройств. Взаимосвязью называется соединение для передачи последовательных двоичных сигналов с регулярной скоростью, определяемой стандартом или соглашениями.

Цепи взаимосвязи приведены в табл. 5.6. Сигналы в цепи 1 возникают в источнике и проходят к приемнику.

 

Таблица 2.6. Цепи интерфейса ИРПС

Номер Наименование Обозначение Направление
Передаваемые данные ПД+/ПД– От И к П/ от П к И
Принимаемые данные ПрД+/ПрД– От П к И / от И к П
Готовность приемника (необязательная цепь) ГП+/ГП– От П к И / от И к П

Знаки «+», «–» указывают направление тока в петле

 

Цепи 1, 2 и интервале между передаваемыми знаками или словами находятся в состоянии 1. Состояние 1 или 0 должно удерживаться в течение целого интервала сигнала. В случае, если устройство предназначено только для приема, цепь 1 остается разомкнутой. Цепь 3 в состоянии 1/0 указывает готовность/неготовность приемника к приему новой информации.

Формат передаваемой информации (в битах) следующий: старт – 1; передаваемые данные – 5,7 или 8; четность – 1 или отсутствует; стоп – 1,5 или 2. Формат кадра при последовательном асинхронном протоколе связи приведен на рис. 2.19.

 

Рис. 2.19. Формат кадра

 

В активном/пассивном режиме цепи взаимосвязи реализованы так, чтобы они питались от передатчика/приемника. Уровни сигналов для двух вариантов ИРПС приведены в таблице 5.7.

 

Таблица 2.7. Уровни сигналов ИРПС

Тип петли ИРПС Состояние Ток, мА
40-миллиамперная токовая петля лог. 1 / 0 30÷50 / 5÷10
20-миллиамперная токовая петля лог. 1 / 0 15÷25 / 0÷3

 

Соединяемые оконечные устройства имеют гальваническое разделение, осуществляемое со стороны цепи взаимосвязи, которая не питается током. Номинальное значение изоляционного напряжения гальванического разделения – 500 В.

Максимальная длительность фронтов сигналов в конце линии, нагруженной на характеристическое сопротивление, не превышает 50 мкс. Цепи взаимосвязи обеспечивают передачу сигналов со скоростью 9600 бит/с на расстояние от 0 до 500 м. При передаче на большие расстояния пропорционально понижается скорость передачи.

Сигналы взаимосвязи должны приближаться к прямоугольной форме. Крутизна фронтов сигналов, измеряемых на выходных зажимах передатчика, нагруженного сопротивлением 100 Ом, не более 1 мкс.

Схема источника сигнального тока выполняется так, чтобы отключение нагрузки и короткое замыкание выходных зажимов или одного из них на землю не приводили к ее повреждению. Любое включение на приемной стороне выполняется так, чтобы при длительной нагрузке максимально допустимым током цепи взаимосвязи оно не приводило к повреждению приемника. Любая схема на приемной стороне рассчитана на исключение повреждения при замыкании проводников в цепи взаимосвязи.

Параметры приемника следующие: падение напряжения, измеряемое на входных зажимах приемника, в состоянии 1 в цепи взаимосвязи – не более 2,5 В; входная емкость – менее 10 нФ; приемник работает независимо от крутизны фронтов в диапазоне 0...50 мкс.

Цепи взаимосвязи выполняются витой парой. Типы применяемого разъема и кабеля не регламентируются, по своим параметрам они должны удовлетворять вышеприведенным требованиям.

Подключение оборудования по интерфейсу «Токовая петля», четырехпроводное включение, полный дуплекс показано на рис. 2.20.

 

Рис. 2.20. Подключение полный дуплекс

 








Дата добавления: 2015-01-15; просмотров: 5351;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.026 сек.