Литейные свойства сплавов

 

К литейным свойствам относят техно­логические свойства металлов и сплавов, которые проявляются при заполнении формы, кристаллизации и охлаждении отливок в форме.

Наиболее важные ли­тейные свойства – это:

- жидкотекучесть,

- усадка (объемная и линейная),

- склонность сплавов к ликвации,

- склонность к образованию трещин, поглощению газов, пористости и др.

Жидкотекучесть – это способ­ность металлов и сплавов течь в расплав­ленном состоянии по каналам литейной формы, заполнять ее полости и четко вос­производить контуры отливки. Жидкотекучесть литейных сплавов за­висит от температурного интервала кри­сталлизации, температуры заливки и фор­мы, свойств формы, вязкости и поверхно­стного натяжения расплава и т.д.

Чистые металлы и сплавы, затверде­вающие при постоянной температуре (эв­тектические сплавы), обладают лучшей жидкотекучестью, чем сплавы, образую­щие твердые растворы и затвердевающие в интервале температур. Это объясняется тем, что для сплавов, затвердевающих при постоянной температуре или в узком ин­тервале температур (не более 30 °С), ха­рактерно последовательное затвердевание отливки (рис. 3.1, а) с образованием сплошной твердой корки на поверхности канала, внутри которой будет сохраняться жидкий расплав, способный вытекать в канал, заполняя его. Подвижность таких расплавов сохраняется вплоть до образо­вания 60...80 % в отливке твердой фазы. В отливках образуется столбчатая струк­тура, что обеспечивает высокую плот­ность и герметичность.

Сплавы, обладавшие широким интер­валом затвердевания (более 100 °С), и сплавы, затвердевающие в виде твердых растворов, образуют в расплаве разветв­ленные дендриты по всему сечению пото­ка (рис. 3.1, б). Такая смесь жидкого рас­плава со взвешенными дендритами теряет способность течь в каналах литейной фор­мы при наличии твердой фазы 20...30 % от объема.

Рис. 3.1 – Схема механизма останова потока расплава в канале литейной формы: а – эвтектических сплавов и сплавов, затвердевающих в малом интервале температур; б – сплавов, затвердевающих в широком интервале температур

 

Повышение температуры заливки и температуры литейной формы увеличива­ет жидкотекучесть сплавов.

Вязкость и поверхностное натяжение практически не оказывают влияния на жидкотекучесть литейных сплавов.

Сплавы, склонные к повышенному окис­лению с образованием сплошной и проч­ной оксидной пенки, обладают понижен­ной жидкотекучестью, так как при заливке оксидные пленки оказывают сопротивле­ние течению расплава, увеличивая внут­реннее трение расплавленного металла.

Однако оксидные пленки, образующие легкоплавкие жидкие фазы, наоборот, по­ложительно влияют на жидкотекучесть. Увеличение теплопроводности материала формы снижает жидкотекучесть. Так, пес­чаная форма отводит теплоту медленнее, и расплавленный металл заполняет ее луч­ше, чем металлическую форму.

Жидкотекучесть литейных сплавов оп­ределяют путем заливки специальных технологических проб (рис. 3.2). Расплав­ленный металл заливают в чашу, отвер­стие в которой закрыто графитовой проб­кой. После подъема пробки металл плавно заполняет спираль. За меру жидкотекучести принимают длину заполненной части спирали, измеряемую в миллиметрах. Наибольшей жидкотекучестью обладает серый чугун, наименьшей – магниевые сплавы.

Рис. 3.2 – Спиральная проба (а) и литейная форма (б) для определения жидкотекучести сплавов: 1,2 – нижняя и верхняя полуформы; 3 – заливочная чаша; 4 – графитовая пробка

 

Усадка– свойство литейных спла­вов уменьшать объем при затвердевании и охлаждении. Усадочные процессы в от­ливках протекают с момента заливки расплавленного металла в форму вплоть до полного охлаждения отливки. Различают линейную и объемную усадку, выражае­мую в относительных единицах.

Линейная усадка – уменьшение линей­ных размеров отливки при ее охлаждении от температуры, при которой образуется прочная корка, способная противостоять давлению расплавленного металла, до температуры окружающей среды. Линей­ную усадку определяют соотношением, %:

 

; (3.1)

 

где – размеры полости формы и отливки при температуре 20 °С.

На линейную усадку влияют химиче­ский состав сплава, температура его за­ливки, скорость охлаждения отливки и литейной формы. Так, усадка серого чугуна умень­шается с увеличением содержания углеро­да и кремния. Усадку алюминиевых спла­вов уменьшает повышенное содержание кремния, усадку отливок – снижение тем­пературы заливки. Увеличение скорости отвода теплоты от залитого в форму сплава приводит к возрастанию усадки отливки.

При охлаждении отливки происходят механическое и термическое торможения усадки.

Механическое торможение возни­кает вследствие трения между отливкой и формой. Термическое торможение обу­словлено различными скоростями охлаж­дения отдельных частей отливки. Слож­ные по конфигурации отливки подверга­ются совместному воздействию механиче­ского и термического торможений.

Линейная усадка для серого чугуна со­ставляет 0,9...1,3 %, для углеродистых сталей – 2...2,4 %, для алюминиевых сплавов – 0,9...1,5 %, для медных – 1,4...2,3%.

Объемная усадка – уменьшение объема сплава при его охлаждении в литейной форме при формировании отливки. Объем­ную усадку определяют соотношением, %:

; (3.2)

 

где– объем полости формы и объем отливки при температуре 20 °С.

Объемная усадка приблизительно рав­на утроенной линейной усадке:

 

; (3.3)

 

Усадка в отливках проявляется в виде усадочных раковин, пористости, трещин и короблений.

 








Дата добавления: 2015-03-26; просмотров: 1621;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.