Средства компенсации реактивной мощности

 

В отличие от активной мощности, вырабатываемой на электростанциях, реактивную мощность несложно генерировать в любом узле электрической сети с помощью установки в этом узле источника реактивной мощности. Полное или частичное покрытие потребности узла нагрузки в реактивной мощности путем установки в этом узле источников реактивной мощности называется компенсацией реактивной мощности. Источники реактивной мощности называются еще компенсирующими устройствами (КУ). В качестве КУ используются батареи конденсаторов, синхронные компенсаторы, синхронные двигатели и статические источники реактивной мощности.

Потребители реактивной мощности имеют, как правило, индуктивный характер нагрузки. Рассмотрим с позиций теоретической электротехники совместную работу конденсаторов и потребителей с индуктивным характером нагрузки, подключенных параллельно к одной точке электрической сети. Работа потребителей индуктивного характера основана на создании магнитного поля, энергия которого в первую четверть периода берется от источника, во вторую четверть – отдается обратно источнику, в третью четверть энергия для создания магнитного поля вновь берется от источника, а в четвертую – вновь отдается источнику и т. д.

Конденсаторы имеют емкостной характер нагрузки. Работа такой нагрузки основана на создании электрического поля, энергия которого во вторую четверть периода берется от источника, в третью четверть – отдается источнику, в четвертую – вновь берется от источника, в первую четверть следующего периода – вновь отдается источнику и т. д. Таким образом, в течение каждой четверти периода индуктивная и емкостная нагрузки обмениваются энергией. Так, для создания магнитного поля в индуктивной нагрузке используется энергия электрического поля емкостной нагрузки, и наоборот. Следовательно, конденсаторы являются источником реактивной энергии для индуктивной нагрузки.

Конденсаторные батареи выпускаются в виде комплектных устройств, состоящих из параллельно и последовательно включенных конденсаторов, коммутационной и защитной аппаратуры. Конденсаторные батареи устанавливаются в узлах электрической сети напряжением до 220 кВ. Мощность конденсаторной батареи зависит от количества параллельно-последовательно включенных конденсаторов в одной фазе, напряжения сети в точке подключения батареи и схемы включения фаз.

При включении фаз Cф конденсаторной батареи треугольником генерируемая одной фазой реактивная мощность в соответствии с рис. 3.2 составляет

Qкб = UI, (3.3)

где U, I – линейные напряжение и ток.

При включении фаз Сф конденсаторной батареи в звезду генерируемая одной фазой реактивная мощность составляет

Qкб = UфIф = UI/3, (3.4)

где Uф, Iф – фазные напряжение и ток.

Таким образом, при включении конденсаторной батареи треугольником генерируемая реактивная мощность будет в три раза больше, чем при включении звездой. Поэтому в большинстве случаев фазы конденсаторной батареи соединяют в треугольник.

Рис. 3.2. Схемы включения конденсаторных батарей

Синхронный компенсатор (СК) представляет собой синхронный двигатель, работающий на холостом ходу без активной нагрузки на валу. В режиме перевозбуждения СК выдает в сеть реактивную мощность, в режиме недовозбуждения – потребляет реактивную мощность из сети. Синхронный двигатель (СД) потребляет из сети активную мощность. Как и СК, СД в зависимости от режима возбуждения выдает или потребляет реактивную мощность.

В ЭЭС с протяженными воздушными линиями электропередачи напряжением 330 кВ и выше возможны режимы, в которых возникает избыток реактивной мощности за счет большой ее генерации воздушными линиями. В этом случае уровни напряжения в отдельных точках электрической сети могут превысить предельно допустимые значения. Для потребления избыточной реактивной мощности могут быть использованы СК в режиме недовозбуждения или шунтирующие реакторы, включаемые между каждой фазой линии и землей.

Шунтирующий реактор – это статическое устройство с индуктивным сопротивлением ХL, потребляющее реактивную мощность

Qр=U2L, (3.5)

где ХL – индуктивное сопротивление реактора;

U – линейное напряжение сети в точке подключения реактора.

Используются как нерегулируемые, так и регулируемые реакторы. В случае нерегулируемого реактора потребление им реактивной мощности, согласно выражению (3.5), зависит от квадрата напряжения в узле подключения реактора. При отключении реактора потребления реактивной мощности нет.

В случае регулируемого реактора потребляемая им реактивная мощность зависит от его реактивного сопротивления ХL, которое изменяется устройством управления за счет подмагничивания реактора. В этом случае реактор должен иметь магнитопровод из ферромагнитного материала.

Включение параллельно с регулируемым реактором батареи конденсаторов с емкостным сопротивлением ХC позволяет получить статический регулируемый источник реактивной мощности, принципиальная схема которого приведена на рис. 3.3. В зависимости от соотношения сопротивлений ХL и ХС реактивная мощность может как потребляться из сети (при ХLC), так и генерироваться в сеть (при ХL > ХC).

 

Рис. 3.3. Принципиальная схема статического регулируемого источника
реактивной мощности

 

Плавность регулирования режима потребления или выдачи реактивной мощности достигается с помощью регулируемого тиристорного блока, входящего в устройство управления УУ.

Сравним различные компенсирующие устройства. Батареи статических конденсаторов являются самыми дешевыми из всех КУ, просты в эксплуатации, имеют малые потери активной мощности (0,0025...0,005 кВт/квар). Однако конденсаторы имеют зависимость выработки реактивной мощности от величины напряжения U в точке подключения (см. выражения (3.3) и (3.4)). При снижении напряжения U генерируемая конденсаторами реактивная мощность уменьшается. Батареи конденсаторов допускают лишь ступенчатое регулирование реактивной мощности, чувствительны к перегрузке.

Синхронные компенсаторы за счет регулирования тока возбуждения имеют возможность плавного регулирования реактивной мощности, возможность работы в режиме как выдачи, так и потребления реактивной мощности и возможность увеличения генерации реактивной мощности при снижении напряжения в узле подключения компенсатора. Синхронные компенсаторы, по сравнению с конденсаторами, более дорогие, более сложные в обслуживании и имеют на порядок большие удельные потери активной мощности. Поэтому в настоящее время синхронные компенсаторы в ЭЭС практически не применяются.

 








Дата добавления: 2015-03-26; просмотров: 1968;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.011 сек.