Нанофазные материалы – более прочные
При достаточно большой нагрузке все материалы ломаются и в месте излома соседние слои атомов навсегда отходят друг от друга. Однако прочность многих материалов зависит не от того, какую силу надо приложить, чтобы отделить два соседних слоя атомов. На самом деле, разорвать любой материал гораздо легче, если в нём есть трещины. Поэтому прочность твёрдых материалов зависит от того, сколько в нём микротрещин и каких, и как трещины распространяются по этому материалу. В тех местах, где есть трещина, сила, испытывающая на прочность материал, приложена не ко всему слою, а к цепочке атомов, находящейся в вершине трещины, и поэтому раздвинуть слои очень легко (см. рис. 48).
Рисунок 48. Схематическое изображение трещины между двумя слоями атомов, расширяющейся при действии сил (красные стрелки).
Распространению трещин часто мешает микроструктура твёрдого тела. Если тело состоит из микрокристаллов, как, например, металлы, то трещина, расколов надвое один из них, может наткнуться на внешнюю поверхность соседнего микрокристалла и остановиться. Таким образом, чем меньше размер частиц, из которых слеплен материал, тем труднее по нему распространяются трещины.
Материалы, составленные из наночастиц, называют нанофазными. Примером нанофазного материала может быть нанофазная медь, один из методов изготовления которой показано на рисунке 49.
Рисунок 49. Изготовление нанофазной меди.
Чтобы изготовить нанофазную медь, лист обычной меди нагревают до высокой температуры, при которой с его поверхности начинают испаряться атомы меди. С конвективным потоком эти атомы движутся к поверхности холодной трубки, на которой они осаждаются, образую конгломераты наночастиц. Плотный слой наночастиц меди на поверхности холодной трубки и является нанофазной медью.
Нанофазные материалы, которые часто называют наноструктурированными, можно изготовлять самыми различными способами, например, сжимая порошок из наночастиц при повышенной температуре (горячий отжим).
Образцы материалов, «слепленные» из наночастиц, оказываются гораздо более прочными, чем обычные. Механическая нагрузка нанофазного материала, как и у обычного, вызывает возникновение в нём микротрещины. Однако прямолинейному распространению этой микротрещины и превращению её в макротрещину мешают многочисленные границы наночастиц, из которых состоит этот материал. Поэтому микротрещина натыкается на границу одной из наночастиц и останавливается, а образец остаётся целым.
На рисунке 50 показано, как прочность меди зависит размера микрокристаллов или наночастиц, из которых она состоит. Видно, что прочность образца нанофазной меди может в 10 раз превышать прочность обычной меди, состоящей, как правило, из кристаллов размером около 50 мкм.
Рисунок 50. Зависимость прочности меди от размера гранул (частиц). Взято из Scientific American, 1996, Dec, p. 74.
При малых деформациях сдвига частицы нанофазных материалов способны чуть-чуть сдвигаться друг относительно друга. Поэтому мелкоячеистая структура нанофазных материалов является более прочной не только при растягивающих деформациях, но и при изгибе, когда соседние слои образца по разному изменяют свою длину.
Дата добавления: 2015-03-23; просмотров: 877;