Не секрет, что современная селекция, то есть отбор животных на племя, является наукой

Как наука селекция связана со многими биологическими дисциплинами: физиологией разводимого вида животных, диетологией вида, зоотехнией, ветеринарией и, конечно же, с генетикой вида.

Но ведь временем создания многих пород современных домашних животных был XVIII и, особенно XIX век, когда генетики еще не существовало.

В те времена породы домашних животных создавались талантливыми людьми, очень наблюдательными, с прекрасной зрительной памятью, с определенными финансовыми ресурсами, которым сопутствовала удача.

Пионером и даже революционером в деле выведения пород сельскохозяйственных животных (лейстерские овцы, крупный рогатый скот – лонгхорн, лошади-тяжеловозы Шайр) был Роберт Беквелл (1725 – 1795).

Беквелл как бы видел животное, чувствовал его племенные возможности и чрезвычайно умело и удачно подбирал пары.

В своем стаде он первым начал применять тесные родственные пары (отец × дочь, брат × сестра) и добился больших успехов. У Беквелла были удачливые последователи, но очень многие животноводы, применяя его методы родственного спаривания, потерпели крах.

По существу с Беквелла началась эпоха животноводства позднего догенетического периода.

Старые животноводы догенетического периода вывели несколько общих правил, не потерявших своего значения и в наши дни.

Говоря о подборе пар, они отмечали:

- потомство от любых производителей всегда приближается к среднему уровню породы. Отсюда следует, что потомство плохих по качеству родителей оказывается несколько лучше их. Рождение экстраклассных по экстерьеру и рабочим качествам животных - явление достаточно редкое, и тем важнее его не пропустить;

- у старых животноводов существовала формула: «Подобное с подобным дает подобное». Говоря современным языком, это означает, что подбор пары должен быть гомогенным, то есть однородным. Нежелательно спаривать двух резко различающихся по типу животных одной породы. Спариваемые животные должны иметь больше общего, чем различий. Это касается как экстерьера, так и элементов поведения, необходимых для служебного использования. Но ведь подобное может быть и плохим. Отсюда следует, что спаривать можно только хороших животных, желательного экстерьера и поведения. Все нежелательное, плохое должно быть отбраковано;

- вот еще одна формула старых животноводов: «Лучшее с лучшим дает лучшее». Однородность подбора должна быть соблюдена и при спаривании лучших животных. Однако, оценивая эту формулу с современных позиций, необходимо учитывать не только однородность фенотипа спариваемых лучших животных, но и их генотипы, возможность наличия у производителей скрытых рецессивных генов. Выявлению этих генов может помочь изучение генеалогии животных, качества не только прямых (родители, потомки), но и боковых (братья, сестры) родственников. Если среди предков и однопометников спариваемых лучших животных имеются;

- корифеи разведения животных прошлого подчеркивали, что лучше использовать в качестве производителя яркого представителя породы с одним или двумя незначительными недостатками, чем серенького, невпечатляющего середнячка породы без явных недостатков. Середнячок даст такое же невыразительное потомство, как и сам. А яркий представитель породы может оказаться отцом победителя выставки и родоначальником заводской линии. В случае необходимости потомков с выраженными недостатками, унаследованными от родоначальника, можно будет отбраковать. В принципе это верно. Весь вопрос в том, что считать допустимым незначительным недостатком. Характерный пример с отсутствием одного или нескольких премоляров. Западные судьи весьма спокойно относятся к этому недостатку, и собака без одного или даже нескольких премоляров может получить оценку «отлично» и интенсивно использоваться в разведении. Имея рецессивный характер наследования, этот недостаток скрытно быстро распространится по популяции, и избавиться от него полностью будет практически невозможно.

Кроме гомогенного (однородного) подбора пар, существует и гетерогенный (разнородный) подбор. При этом чаще всего возникают сочетания неродственных или весьма отдаленно родственных друг другу животных.

Конечная цель гетерогенного подбора – изменить тип или отдельные существенные признаки у потомства.

Например, вводя в разведение чужекровного производителя желаемого современного типа, исправляют недостатки, свойственные местному старотипному поголовью. Так спаривание иностранного производителя современного облика с местными суками традиционного разведения позволяет несколько улучшить, осовременить облик потомства, сохранив при этом положительные качества, свойственные местному поголовью.

Повторяясь, напомню, что, к сожалению, разведенцы некоторых пород, забыв 70-летнюю историю советского собаководства, перешли на работу только с ввозимыми собаками, в основном англо-американского происхождения, занявшись, таким образом, эксплуатацией чужих достижений.

При гетерогенном подборе пар в пометах наблюдается разнообразие типов, так как рождаются щенки фенотипически приближающиеся то к одному, то к другому родителю. Кроме того, здесь возможно появление щенков резко отличающихся по типу от обоих родителей.

Поэтому и при гетерогенном подборе желательно не спаривать особей, резко различающихся по отдельным статям.

Спаривать суку с недостатком можно лишь с кобелем правильного сложения, у которого отсутствует данный недостаток. Нельзя спаривать животных, имеющих противоположные недостатки, например, мелкую суку спаривать с кобелем-переростком.

Владельцу даже маленького питомника требуются определенные знания как по общей генетике, так и по частной генетике собак. Получить эти знания сейчас вполне возможно, если в качестве введения в науку, прочитать популярные книги Шарлоты Ауэрбах («Генетика», 1966; «Генетика в атомном веке», 1968; «Наследственность», 1969).

Затем следует перейти к книге П. М. Бородина «Кошки и гены», 1995 и обобщающей работе Н. Н. Московкиной и М. Н. Сотской «Генетика и наследственные болезни собак и кошек», Москва, 2000.

Кроме того, в нашей стране издана книга английского генетика и собаковода М. Уиллиса «Генетика собак», Москва, Центрполиграф, 2000.

Отсылая любознательного собаковода к книгам, написанным учеными, остановлюсь лишь на главном.

В ядрах клеток живых организмов содержатся особые образования – хромосомы. Они видны в микроскоп при окрашивании красителем клетки, находящейся в одной из стадий деления. Хромосомы различны по форме, размерам и характеру поперечной полосатости. По этому их можно различать и классифицировать.

В клетках тела (соматических) хромосомы представлены многими парами. Хромосомы каждой пары гомологичны друг другу, то есть являются идентичными копиями. Выяснено, что у млекопитающих хромосомный набор самок весь состоит из таких гомологичных пар.

У самцов же одна пара не является гомологичной. Она состоит из одной большой хромосомы, не отличимой от одной из пар хромосомного набора самок, и одной маленькой, присутствующей только у самцов. Маленькая получила название Y-хромосомы, а большая – X-хромосомы.

Таким образом, в соматических клетках содержится двойной или диплоидный набор хромосом.

У собак в соматических клетках 39 пар хромосом, то есть всего 78 хромосом.

В половых клетках – сперматозоидах самцов и яйцеклетках самок (гаметах) содержится одинарный (гаплоидный) набор хромосом, по одной из каждой пары.

В гаплоидных наборах яйцеклеток самок присутствует X-хромосома.

В гаплоидных наборах сперматозоидов самцов в равной вероятности могут присутствовать как X-, так и Y-хромосома. X и Y хромосомы носят название половых хромосом, так как участвуют в определении пола. Совокупность генов, содержащихся в гаплоидном (одинарном) наборе хромосом, называется геном.

Внутри каждой хромосомы лежит спиральная, состоящая из двух цепочек, структура дезоксирибонуклеиновой кислоты (ДНК), на которой закодирована вся жизненная программа жизни и развития живого существа.

ДНК ответственна за передачу наследственной информации следующему поколению.

Отрезок ДНК, кодирующий синтез определенного фермента, необходимого для построения молекулы конкретного белка, носит название гена.

На каждой хромосоме расположено много генов.

Участок хромосомы, на котором размещен тот или иной ген, называется локусом.

В одинаковых локусах гомологичных хромосом расположены одинаковые гены.

Такие гены носят общее название аллелей.

ДНК и, соответственно хромосомы, обладают способностью к самокопированию и самовоспроизведению в процессе деления клеток.

В результате многократно повторяющегося деления клеток в ходе биологической истории жизни, при самокопировании ДНК возникают ошибки и неточности – так называемые мутации.

Гены, как отрезки ДНК, мутируют по-разному.

Одни из них мутируют крайне редко и мутации в них несовместимы с жизнью.

Другие гены оказываются подвержены мутациям чаще и по нескольку раз, не очень влияя на жизнеспособность, но изменяя признак.

Обычно мутирует один из генов аллельной пары.

В большой популяции животных кроме немутантного аллеля может встречаться несколько мутантных аллелей одного гена, но отдельная особь может нести в своем генотипе только два аллеля одного гена, один из которых получен от отца, а другой - от матери.

Так существует несколько генов серии агути, контролирующих окрас шерсти. Это А, аd, ay, aja, at, но отдельная особь может нести только любую пару из них.

Соматические клетки делятся при помощи способа, носящего название митоз. В процессе митоза каждая хромосома удваивается, построив свою точную копию. Этот процесс называется редупликацией. В ходе дальнейшего деления клетки хромосомы, родительская и дочерняя, расходятся по двум образовавшимся клеткам.

Если хромосомы несут мутантные гены, то страдают только соматические клетки их конкретного носителя. Животное может оказаться больным, уродливым, даже погибнуть. Но следующему поколению мутации соматических клеток не передаются.

Половые клетки, то есть сперматозоиды и яйцеклетки образуются из диплоидных клеток-предшественников при помощи процесса деления клеток, называемого мейоз.

Это деление происходит в половых органах: в яичниках и семенниках животных.

Главным в процессе мейоза является редукционное деление, сокращающее число хромосом в ядре клетки вдвое. Таким образом, образованные из одной диплоидной клетки, две гаплоидных содержат лишь по одной хромосоме из каждой пары.

Рисунок 1

Сперматозоиды и яйцеклетки гаплоидны. Они носят обобщенное название гамет.

У самца все четыре гаплоидные клетки превращаются в гаплоидные сперматозоиды. У самок лишь одна гаплоидная клетка развивается в яйцеклетку, а три остальные образуют полярные тельца, которые потом разрушаются.

При оплодотворении лишь один из миллионов сперматозоидов проникает в яйцеклетку. Остальные помогают ему проникнуть сквозь оболочку яйцеклетки.

Оплодотворенная яйцеклетка становится диплоидной. Она носит название зиготы. Она несет в себе весь необходимый набор информации и энергию для построения организма. Зигота делится при помощи митоза. Таким образом, каждая клетка строящегося организма диплоидная.

Именно к митозу относится третий закон Менделя. Это закон независимого распределения хромосом по клеткам в процессе их деления.

Гены одной аллельной пары распределяются в мейозе независимо от других пар и комбинируются в процессе образования гамет случайно, что ведет к разнообразию вариантов их соединений.

Закон проявляется для тех пар признаков, гены которых лежат на негомологичных хромосомах.

Мы не знаем, как распределились хромосомы, а значит и гены в гаметах родителей. Мы не знаем, какой сперматозоид и с какой генетической информацией проникнет в яйцеклетку, о которой тоже не известно, какой набор хромосом она несет. Это дело его величества случая.

Необходимо ввести еще два понятия.

Генотип – совокупность всех генов организма во всей их сложности и взаимодействии между собой.

Фенотип – совокупность всех внутренних и внешних признаков и свойств организма, сформировавшихся на базе генотипа в процессе индивидуального развития особи.

Мендель вывел закон единообразия гибридов первого поколения, обычно его называют первым законом Менделя. Закон гласит: «При скрещивании форм, отличающихся между собой по одному контрастному, альтернативному признаку, все потомство наследует признак одного из родителей, а именно доминантный признак. Причем признаки должны быть константными, постоянными, сохраняющимися в длинной череде поколений».

Так, если взять двух доберманов черного и коричневого окрасов, в длинном ряду предков которых не встречались особи других окрасов, то при их скрещивании выяснится:

BB × Bb = Bb
черный окрас   коричневый окрас   черный окрас

Черный окрас, сохраняющийся у гибридов первого поколения, принято называть доминантным, а исчезнувший коричневый – рецессивным признаком.

При получении второго поколения при скрещивании Bb×Bb, коричневый окрас восстанавливается у одной четверти потомства:

Bb × Bb = BB + Bb + Bb + Bb
        черный   черный   черный   коричневый

Это расщепление иллюстрирует второй закон Менделя, гласящий: «При моногибридном скрещивании во втором поколении наблюдается расщепление по фенотипу в соотношении по фенотипу 3:1, и расщепление по генотипу в соотношении 1:2:1, где одна часть нерасщепляющихся гомозиготных доминантных особей, две части расщепляющихся гетерозиготных особей и одна часть нерасщепляющихся гомозиготных рецессивных особей».

Уточним, что гомозигота – это генетически однородная по данному аллелю особь, полученная в результате слияния гамет с одинаковыми генами, и поэтому продуцирующая одинаковые гаметы по рассматриваемой паре генов.

То есть в нашем случае ВВ – гомозигота по доминантному гену, а bb – гомозигота по рецессивному гену.

Гетерозигота – особь генетически неоднородная, полученная в результате слияния гамет с разными аллелями одного гена и продуцирующая различающиеся гаметы по рассматриваемой паре генов.

В нашем случае это особи генотипа Bb.

При полном доминировании гетерозигота Bb фенотипически не отличается от гомозиготы BB.

Довольно часто доминантная аллель не полностью подавляет проявление рецессивного аллеля, и тогда гетерозиготы отличаются как от гомозигот по доминантному так и по рецессивному аллелю.

Хорошим примером неполного доминирования является окрас «мерле», встречающийся у колли.

Этот окрас определяется доминантным геном М.

У собак нормального окраса генотип по этому гену mm (то есть они гомозиготы по рецессиву).

Гомозиготы по доминантному гену ММ – белого окраса, с голубыми глазами, полуслепые и глухие.

Гетерозиготы Mm имеют белые отметины и участки нормального черного и разбавленного серого окраса.

Для того чтобы избежать появления собак ММ, спаривают собак нормального окраса с собаками мерлевого (мраморного) окраса:

Mm × mm = 2Mm + 2mm
мерль   норма   мерль   нормальный окрас

При полном доминировании выявить гетерозигот невозможно. Для выявления гетерозигот используется возвратное анализирующее скрещивание, заключающееся в спаривании проверяемой особи с формой, гомозиготной по рецессивному гену.

Допустим, мы хотим выяснить, несет ли наш черный доберман ген коричневого окраса «b». Для этого мы его спариваем с коричневой особью. Если проверяемая собака не несет «b», то все потомство будет черным, но гетерозиготным по этому аллелю:

BB × Bb = 4Bb
черный   коричневый   черные

В случае если проверяемый черный доберман имеет генотип Bb, то:

Bb × bb = Bb + Bb + bb + bb
черный   коричневый   черный   черный   коричневый   коричневый

Естественно, если мы хотим в нашем питомнике разводить только черных доберманов, то от всего полученного, как в первом, так и во втором случае потомства нужно избавиться.

Менделем были осуществлены дигибридные и тригибридные скрещивания.

Допустим мы скрещиваем черную короткошерстную собаку с коричневой длинношерстной.

Известно, что ген черного окраса B доминирует над геном коричневого окраса b, а ген, определяющий короткую шерсть L, доминирует над геном длинной шерсти l.

Спариваются:

BBLL × bbll
черная короткая шерсть   коричневая длинная шерсть

Первое поколение BbLl – все черное короткошерстное.

Таблица 5 - Гаметы у первого поколения BL, Bl, bL, bl

  BL Bl bL bl
BL BBLL черный короткошерстный BBLl черный короткошерстный BbLL черный короткошерстный BbLl черный короткошерстный
Bl BBLl черный короткошерстный BBll черный длинношерстный BbLl черный короткошерстный Bbll черный длинношерстный
bL BbLL черный короткошерстный BbLl черный короткошерстный bbLL коричневый короткошерстный bbLl коричневый короткошерстный
bl BbLl черный короткошерстный Bbll черный длинношерстный bbLl коричневый короткошерстный Bbll коричневый длинношерстный

Итого:

- черных короткошерстных 9 частей

- черных длинношерстных 3 части

- коричневых короткошерстных 3 части

- коричневых длинношерстных 1 часть

Во втором поколении расщепление по фенотипу наблюдается в отношении: 9:3:3:1

Если же посмотреть как ведет себя каждый признак отдельно, то:

- черных собак будет 12, а коричневых 4;

- короткошерстных собак будет 12, а длинношерстных 4.

То есть по каждому признаку в отдельности сохраняется отношение моногибридного скрещивания 3:1

Поэтому третий закон Менделя можно записать так: «При дигибридном и полигибридном скрещивании каждая пара признаков ведет себя независимо от другой пары, и во втором поколении наблюдается расщепление 3:1 по каждому признаку в отдельности».

Наследование признаков при скрещивании подчиняется следующим закономерностям.

Таблица 6

Скрещивание Число альтернативных признаков, по которым различаются животные Число типов гамет, образующихся у скрещиваемых животных Число возможных комбинаций гамет в F2 (число квадратов в решетке Пеннета)
Моногибридное 2=21 4=22
Дигибридное 4=22 16=(22)2
Тригибридное 8=23 64=(23)2
Полигибридное n 2n (2n)2

Таблица 7

Скрещивание Число разных фенотипов в F2 Число разных генотипов в F2 Число расщеплений по фенотипу в F2
Моногибридное 2=21 3=31 1+2+1=3+1=(3+1)1
Дигибридное 4=22 9=32 9+3+3+1=16=(3+1)2
Тригибридное 8=23 27=33 57+9+9+9+3+3+3+1=(3+1)3
Полигибридное 2n 3n (3+1)n

Хочу подчеркнуть, что доминантное и рецессивное состояние – свойство только аллельной пары генов, расположенных в одних локусах гомологичных хромосом. Эти термины не применимы, когда признак определяется взаимодействием неаллельных генов, расположенных в разных локусах, на разных хромосомах.

Допустим, черный шнауцер имеет генотип AsAsCC (учитываются только два гена), а шнауцер окраса «перец с солью» - aqaqcchcch. Гены As и C неаллельны, поэтому доминировать могут только As над aq и C над cch.

Доминантный аллель As определяет черный окрас в серии генов A (агути), рецессивный аллель этой серии aq определяет зонарный окрас у гомозигот по рецессиву этого гена.

Доминантный аллель C определяет полную выработку двух видов пигмента в каждом волосе (эумеланина и феомеланина), а его рецессив cch в гомозиготном состоянии блокирует выработку феомеланина, ответственного за рыжий окрас в каждом волосе, не затрагивая эумеланин, отвечающий за черный пигмент. Окрас «перец с солью» вызван блокирующим действием гена cch на aq, а не доминированием над ним. Поэтому нельзя сказать, что ген cch доминирует над геном aq.

У цвергшнауцеров есть окрас «черный с серебром».

Он определен взаимодействием генов cch и at тех же двух серий генов – агути и альбино.

Генотип цверга окраса «черный с серебром» atatcchcch.

Ген at переводит окрас агути в черно-подпалый.

Таким образом, шнауцер «черный с серебром» представляет из себя черно-подпалую собаку, рыжий окрас которой заблокирован действием cchcch.

Ген at – последний ген серии агути, и над ним полностью или не полностью доминируют все гены серии:

A®aq®ay®aja®at

Таким образом, при скрещивании собаки окраса «перец с солью» с собакой окраса «черный с серебром» может получиться потомство перцового окраса:

aqaqcchcch×atatcchcch=aqatcchcch

Но это не значит, что у шнауцеров «перец с солью» доминирует над черным. Ген окраса агути aq доминирует над геном подпалого окраса at, но не «перец с солью» доминирует над черным.

Неаллельные гены могут действовать на признак совместно, взаимодействуя между собой.

Выявлено несколько видов таких взаимодействий: комплементарное действие, энистаз, плейотропия.

Некоторые гены являются генами-модификаторами, усиливая или ослабляя действие генов, отвечающих за признак.

Существует и полимерное наследование, когда выраженность признака определяется совместным действием нескольких пар аллельных генов, лежащих в разных локусах.

Каждая аллельная пара одного локуса подчиняется законам Менделя, но суммарное действие нескольких пар полимерных генов этим законам не подчиняется. Выраженность признака здесь зависит от числа доминантных или рецессивных аллелей в генотипе.

Увидеть четкие менделеевские отношения внутри одной породы трудно, так как породы восходят к ограниченному числу предков и построены на близкородственном спаривании (инбридинге).

Мы часто ожидаем получить отличное потомство от победителя выставки. Но достоинство победителя, все эти чуть-чуть, видимые судейским глазом, определяются не только удачной комбинацией генов, но и выращиванием, выкармливанием, тренировкой, то есть они не всегда имеют наследственный характер.

Кроме того, генетические законы Менделя справедливы только для больших чисел, то есть являются статистически достоверными.

Шести, или даже двенадцати, рожденных щенков часто не достаточно, чтобы увидеть менделеевские закономерности.

Признаков, наследуемых моногенно, в общем, не так много. Но к ним относятся многие уродства и наследственные болезни, а также летали, вызывающие смерть потомка на разных этапах развития.

Вот здесь выяснение вопроса, наследствен ли данный признак и каков характер наследования, представляет интерес для разведенца.

Для этой цели надо ответить на следующие вопросы:

- прежде всего, надо выяснить, были ли сообщения в литературе о том, что данный дефект у собак является наследственным;

- получена ли дефектная собака в результате родственного спаривания;

- появлялся ли данный дефект в данной популяции ранее в этом году или в разные годы.

Если ответы на все вопросы утвердительны, то дефект имеет, скорее всего, наследственный характер.

Но нужно помнить, что аномалии могут иметь и негенетический характер, в частности их причиной могут быть вирусные заболевания, некоторые яды, радиация.

Для установления характера наследования дефекта нужно произвести анализ родословных всех дефектных животных. Родословные должны содержать возможно большее число предков (не менее пяти поколений).

Если дефект носит доминантный характер наследования, то у дефектной особи хотя бы один из родителей должен обладать этим дефектом.

Если дефектные особи появляются от двух здоровых родителей, то нужно изучать предков родителей с отцовской и материнской стороны. Наличие двух путей, связывающих дефектных особей с общим предком, говорит о рецессивном характере наследования дефекта.

Бороться с доминантными аномалиями просто.

Нужно убрать из разведения, отбраковать всех животных, в фенотипе которых проявляется аномалия.

Бороться с рецессивными аномалиями сложно, так как мы можем выбраковать только гомозигот по рецессиву, у которых аномалия проявляется в фенотипе. У гетерозигот по нежелательному рецессивному гену аномалия в фенотипе не проявляется, и поэтому выбраковать их невозможно.

Для выявления таких гетерозигот нужно осуществить анализирующее скрещивание с гомозиготой по рецессивной аномалии. Полученное потомство в разведение допускать нельзя.

Если выбраковывать только рождающихся гомозигот по рецессиву, аномалия не исчезнет практически никогда.

Во многих странах считают нормальным, что питомники проводят такие анализирующие скрещивания.

Английский Кеннел-Клуб считает достаточным, чтобы при анализирующем скрещивании собаки доминантного фенотипа с гомозиготой по рецессиву родилось 6 щенков доминантного фенотипа. В этом случае вероятность того, что проверяемый кобель не несет данного рецессивного гена, составляет 98.4 %.

Но рождение хотя бы одного щенка рецессивного фенотипа заставляет признать проверяемое животное доминантного фенотипа гетерозиготой по данному гену.

Иногда гомозиготных рецессивных особей использовать для проверки носительства нежелательного гена невозможно (например, при летальности рецессивного аллеля). В таких случаях для анализирующего скрещивания используются животные, гетерозиготность которых по проверяемому рецессивному гену точно известна.

Но тогда даже рождение 11 щенков доминантного фенотипа даст лишь 96 % уверенности, что проверяемое животное не несет нежелательный рецессивный ген. И опять же, повторяю, рождение хотя бы одного щенка рецессивного фенотипа доказывает, что проверяемое животное – гетерозигота по данному гену.

Хорошим методом проверки производителя на носительство всех нежелательных рецессивных генов является его скрещивание с собственными дочерьми.

Спаривание с одной дочерью может быть недостаточно, так как она может быть гомозиготна по каким-то доминантным генам.

Но сочетание отца с дочерью испытывает производителя по всем рецессивным генам сразу.

Спариваемая с отцом дочь не может быть гомозиготна по всем генам одновременно. Поэтому даже спаривание с одной дочерью во многом вскрывает наследственность отца.

Но сколько же щенков должно быть в помете от вязки с отцом?

На основании теории вероятностей разработана следующая таблица.

Таблица 8 - При спаривании дочери с отцом

Число щенков в помете Вероятность того, что гетерозиготность дочери не будет выявлена
в десятичных долях в процентах
0.88
0.78
0.71
0.66
0.62
0.59
0.57
0.55
0.54
0.53
0.52
0.52

Допустим, что проверяемого кобеля желательного фенотипа повязали с пятью его дочерьми, и пометы состояли из 3, 4, 5, 5 и 7 щенков.

Ни в одном из этих пометов не было обнаружено гомозигот по нежелательным рецессивным генам.

Величины вероятностей того, что гетерозиготность по всем нежелательным рецессивам осталась не выявленной, составляет согласно таблице:

0.71; 0.66; 0.62; 0.62; 0.57

Для определения вероятности невыявления гетерозиготности для отца эти величины необходимо перемножить:

0.71×0.66×0.62×0.62×0.57=0.1026 или 10.3 %

Таким образом, можно считать, что проверяемый кобель свободен от всех нежелательных рецессивных генов с вероятностью:

1-0.126=0.8974 или 89.7 %,

а его дочери соответственно на 29 %, 34 %, 38 %, 43 % в зависимости от числа щенков в помете.

Этот способ позволяет проверить с разной долей вероятности не только отца, но и дочерей. И не по одному, как в анализирующем скрещивании, а по всем нежелательным рецессивным генам.

В случае если среди потомства появится хотя бы один щенок с нежелательным рецессивным фенотипом по любому гену, то носительство этого аллеля проверяемым отцом, а также его дочерью – матерью щенка – будет доказано.

В большом животноводстве этот метод проверки по потомству широко применяется даже для малоплодных животных, таких как крупный рогатый скот. Есть быки, оплодотворившие 200 и более собственных дочерей, и в приплоде не было обнаружено рецессивных дефектов. Этим занимаются специализированные племенные хозяйства.

Главный недостаток этого метода состоит в том, что рождается высокоинбредное потомство, с уровнем гомозиготности 25 %.

В животноводстве существуют методы проверки производителя по потомству более спокойные в отношении инбридинга. Например, спаривание проверяемого самца с полусестрами. Но в этом случае полусестер нужно больше, тот же результат дают спаривания с внучками.

При спаривании производителя с полусестрами необходимо не менее семи полусестер при условии получения одиннадцати потомков от каждой. Это при отсутствии появления потомка с рецессивным фенотипом дает лишь 95 % вероятности, что проверяемый производитель свободен от нежелательных рецессивных генов, полученных от общего с полусестрами предка, но не по генам, которые переданы полусестрам от других родителей.

Критерием является появление хотя бы одного потомка рецессивного фенотипа. В этом случае оба производителя гетерозиготны.

Осуществить такую проверку по потомству производителя на наличие нежелательных рецессивных генов в условиях питомника трудно, а часто и невозможно.

Ведь и отбракованных дочерей и полученное от них потомство нужно содержать. Рецессивы проявляют свое действие не обязательно при рождении щенка.

Многие рецессивные аномалии делают собаку инвалидом уже во взрослом состоянии. Таким образом, рожденное «экспериментальное» потомство должно находиться под наблюдением в течение всей жизни.

С этих позиций встречающиеся объявления «предлагается для племенного использования кобель, проверенный по потомству» представляются не более чем рекламным трюком.

Мне возразят, что кобель повязал 15 сук и нигде якобы не встречено рецессивных аномалий.

Во-первых, аномальных животных еще надо поискать среди потомства этого кобеля, они могли просто исчезнуть из поля зрения разведенца.

Во-вторых, импортный кобель повязал местных сук, в значительной мере для него чужекровных. Таким образом, нежелательные рецессивные гены, если они у него были, оказались загнанными в подполье.

Они проявятся в следующих поколениях, при инбридингах на этого кобеля.

Задают вопрос. Можно ли сделать вывод о том, свободен ли проверяемый кобель от носительства нежелательных рецессивных генов на основании многих сочетаний с ним сук различного происхождения, неродственных кобелю? Нет, такого вывода сделать нельзя. Если хотя бы от одной суки и проверяемого кобеля родится потомок рецессивного фенотипа, значит и отец и мать носители нежелательного рецессивного гена. Но, допустим, такого потомка ни в одном из сочетаний не встречено. Это ни о чем не говорит.

Если частота нежелательного рецессивного гена в сучьей популяции мала, то суки могут оказаться свободными от нежелательных аллелей. Если частота нежелательного рецессивного гена у сук высока, то рожденное поголовье от отца свободного от этого гена, фенотипически будет нормальным.

Для истинной проверки на носительство рецессивных нежелательных генов нужна провокация, каковой и является спаривание проверяемого кобеля с ближайшими родственниками.

Главным средством борьбы с аномалиями, как рецессивными, так и доминантными, является селекция. Ни одна особь с аномалией не должна быть допущена к разведению.

Однако, практически бракуются лишь те животные, у которых аномалия сильно выражена.

Слабо выраженные случаи (вспомним дисплазию тазобедренного сустава), если во всем остальном собака хороша, не отбраковываются многими разведенцами. Это значит, что селекция мало эффективна. В ряде случаев, когда аномалия имеет полигенное происхождение, приходится выбраковывать внешне здоровых братьев т сестер аномальной собаки.

Каким же требованиям должен отвечать племенной кобель, кроме отменного физического и психического здоровья, отличного экстерьера и отсутствия в генотипе нежелательных рецессивных генов?

Все мы хотим, чтобы производитель был улучшателем, чтобы он стойко передавал потомству свои выдающиеся качества, то есть, чтобы он был препотентен.

У препотентного кобеля, для того, чтобы он мог «печатать себя» в потомстве, большинство главных «породных» генов и генов, влияющих на схожесть потомков, находится в гомозиготном состоянии.

Таблица 9 - Значение гетерозиготности родителей в увеличении числа генотипов, возможных у потомков

Номер помета Генотипы родителей Число возможных генотипов у детей
отца матери
AABBCCDD AABBCCDD
AABBCCDD aabbccdd
AaBBCCDD AaBBCCDD 3=31
AaBbCCDD AaBbCCDD 9=32
AaBbCcDD AaBbCcDD 27=33
AaBbCcDd AaBbCcDd 81=34

Родители, гомозиготные по многим парам генов, будут иметь потомков более сходных генетически и фенотипически между собой, чем потомство родителей гетерозиготных по этим генам.

Наиболее простой способ получить таких гомозиготных родителей – это родственное спаривание или инбридинг.

Инбридинг существует и в дикой природе. Любая дикая популяция в той или иной степени заинбридирована. В больших популяциях, живущих на огромных территориях, уровень инбридинга невелик. Но в маленьких популяциях, занимающих ограниченные территории, он может быть довольно высок.

Собаководы-любители во всем мире занимаются чистопородным разведением собак, то есть получением потомства от особей, принадлежащих к одной породе.

«Порода – это созданная человеческим трудом, достаточно многочисленная группа домашних животных (в частности собак), имеющих общее происхождение и общность ряда полезных для человека морфологических, физиологических и поведенческих особенностей, достаточно стойко передающихся потомству. При хорошо организованной племенной работе порода способна изменяться в желаемом направлении».








Дата добавления: 2015-03-19; просмотров: 914;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.072 сек.