Дифференциальная токовая защита с промежуточными насыщающимися трансформаторами тока. Принцип действия НТТ. Расчёт тока срабатывания. Реле РНТ-565. Реле ДЗТ-11.
Основным элементом реле является насыщающийся трансформатор. Обозначение TLAT.
Насыщающийся трансформатор тока TLAT содержит трехстержневой ферромагнитный сердечник. Воздействующая величина (ток I1) поступает в первичную обмотку w1а к вторичной w2подключается измерительное максимальное реле тока КА. Характеристика Ip=f{I1) насыщающегося трансформатора зависит от характера изменения тока I1. Если ток I1 cинусоидальный, то магнитная индукция в сердечнике изменяется в широких пределах —Bmax<=B<=Bmax. Указанному изменению индукции пропорционально среднее значение ЭДС вторичной обмотки и ток Iр в реле. В этом случае НТТ действует как обычный трансформатор тока. Апериодическая слагающая насыщает магнитопровод и изменяет режим работы НТТ.
На рисунке показан случай, когда ток iбр (бросок тока намагничивания включаемого силового трансформатора) из-за апериодической слагающей полностью смещен относительно оси времени. Прохождение такого тока по обмотке w1НТТ сопровождается изменением индукции только в пределах +BS>=B>=+Br. Поэтому среднее значение ЭДС вторичной обмотки и ток в реле получаются намного меньшими, несмотря на то что ток Iбр.max>Im1. Обмотки wK' и wK" предусмотрены для усиления действия апериодической слагающей. |
Насыщающиеся трансформаторы тока, применяемые в реле, отличаются от рассмотренных НТТ числом первичных обмоток. На магнитопроводе НТТ реле РНТ-565 кроме основной рабочей обмотки Wраб(w1) размещены дополнительные обмотки. У реле РНТ-565 они используются как уравнительные Wур I и WурII при неравенстве сравниваемых токов. Обмотки Wраб, Wур I и WурII выполнены секционированными с отводами для возможности дискретного изменения параметров реле. Во всех обмотках НТТ, кроме вторичной w2, предусмотрено переключение чисел витков для изменения уставок срабатывания реле.
Принципиальная схема защиты трансформатора с ТLАТ в однофазном изображении
Реле РНТ-565 применяются в том случае, если чувствительность токовой отсечки недостаточна. При этом требуемую чувствительность защита имеет обычно на двухобмоточных трансформаторах мощностью менее 25 МВА.
Предварительное определение тока срабатывания выполняется по двум условиям
1. По условию отстройки от броска тока намагничивания:
Ic.з.>=1,3.*Iт.ном.
2. По условию отстройки от максимального первичного тока небаланса.
При этом учитывается, что для защиты с НТТ коэффициент kап=1,0, а составляющая тока небаланса Dfвр в первом приближении не учитывается благодаря соответствующему выбору числа витков уравнительных обмоток НТТ,
Принимается большее из двух полученных значений тока срабатывания и производится предварительная проверка чувствительности.
Расчетным по чувствительности является двухфазное к. з. на стороне низшего напряжения в минимальном режиме работы питающей системы и при максимальном сопротивлении защищаемого трансформатора.
Если это условие обеспечивается, то расчет параметров защиты продолжают. Выбирают схему соединения трансформаторов тока и их коэффициенты трансформации, определяют число витков дифференциальной Wдиф (Wраб) и уравнительных WУРI и WУРII обмоток исходя из принятого значения тока срабатывания, магнитодвижущей силы срабатывания Fc.р. и условия полного выравнивания
В ряде случаев чувствительность защиты с реле РНТ может оказаться недостаточной. В таких случаях дифференциальная защита выполняется посредством реле с торможением.
3. Дифференциальная токовая защита на основе реле с магнитным торможением.
Для дифференциальной защиты трансформаторов выпускаются реле с магнитным торможением типа ДЗТ-11.В реле ДЗТ-11 используется НТТ с дополнительной обмоткой управления, которая называется тормозной обмоткой. Обмотка управления предназначена для изменения характеристики НТТ. Дополнительный ток Iу, протекающий по обмотке управления изменяет степень намагничивания НТТ. С увеличением тока Iу, степень намагничивания увеличивается. Ток небаланса, протекающий по обмотке реле при переходном процессе уменьшается.
Ток срабатывания защиты c реле ДЗТ-11 зависит от числа витков и значения тока тормозной обмотки. Отстройка от бросков тока намагничивания достигается выбором тока Iс.з min по условию
Ic.з.>=kотс.*Iт.ном. (1).
Коэффициент отстройки kотс принимается равным 1,5, так как реле ДЗТ-11 имеет худшие, чем реле РНТ, параметры в отношении отстройки от неустановившихся токов из-за отсутствия в НТТ реле короткозамкнутой обмотки. Далее расчет витков НТТ реле и максимального первичного тока небаланса Iнб.рсч max1 выполняется, как и для реле РНТ. Дополнением к этому расчету является выбор числа витков тормозной обмотки Wтрм, обеспечивающих отстройку от Iнб.рсч max1.
Общая оценка дифференциальных защит трансформаторов. Дифференциальные защиты обеспечивают быстрое и селективное отключение повреждений в зоне, охватываемой трансформаторами тока. Рекомендуется применять дифференциальную защиту на одиночно работающих трансформаторах мощностью Рт>=6,3 МВ-А и на трансформаторах мощностью Рт>=4 МВ-А, работающих параллельно. Дифференциальная защита устанавливается также на трансформаторах мощностью Рт=:1 ...4 МВ-А в том случае, если: токовая отсечка не удовлетворяет требованиям чувствительности, а максимальная токовая защита имеет выдержку времени tс.з.>>0,5 с; трансформатор установлен в районе, подверженном землетрясениям.
При выборе схемы дифференциальной защиты необходимо прежде всего рассмотреть возможность применения наиболее простой из дифференциальных защит — дифференциальной токовой отсечки. Только в случае ее недостаточной чувствительности следует использовать реле РНТ. Защиты с реле, имеющими торможение, наиболее сложны, и их применение оправдано только невозможностью отстройки защиты без торможения от установившихся значений максимального тока небаланса при внешних коротких замыканиях.
Дифференциальная токовая защита имеет тот недостаток, что может отказать из-за недостаточной чувствительности при внутренних коротких замыканиях, например витковых. Это вызывает необходимость устанавливать наряду с дифференциальной и газовую защиту.
Построить векторную диаграмму напряжений для сетей до 110 кВ, расчет режима по данным начала сети.
Продольная составляющая падения напряжения ∆U12К = BC'- это проекция падения напряжения на действительную ось или на U1. Поперечная составляющая падения напряжения δU12К = AC' - это проекция падения напряжения на мнимую ось. Один и тот же вектор падения напряжения AB → проектируется на различные оси. Поэтому
∆U12Н ≠ ∆U12К , δU12Н ≠ δU12К
Если выразить ток в линии через известные в данном случае мощность в начале продольной ветви линии S12Н и U1 то получим выражения:
∆U12Н= Р12Н r12 + Q12Н x12/U2 (3.35)
jδU12Н = (Р12Н x12 - Q12Н r12)/U2 (3.36)
Напряжение в конце линии.
U2 = U1 - ∆U12Н - jδU12Н (3.37)
где U1 известно; ∆U12Н, jδU12Н определяются из (3.35), (3.36).
Модуль и фаза U2 равны
U2 = √ (U1 - ∆U12Н)2 + (δU12Н)2
tgδ= δU12Н/(U1 + ∆U12Н)
Определение напряжения в конце линии по данным начала по выражениям (3.37), а также (3.35), (3.36).
Векторная диаграмма. Напряжение Uф1, определится как геометрическая сумма векторов напряжения конца линии Uф2 и падения напряжения ∆Uф, вызванного током IЛв сопротивлениях R и X линии
Uф1 = Uф2 + ∆Uф, где
∆Uф = IЛ(R + jX) = (lB2 + I2)(R + jX) = lB2(R + jX) + I2(R + jX)= ∆Uф0 + ∆Uф2.
Полное падение напряжения в нагруженной линии, как видно из формулы, складывается из падения напряжения при холостом ходе линии ∆Uф0, вызванного током IВ2, и падения напряжения ∆Uф2, от тока нагрузки /2.
Переходя к графическому решению (рис. 10-7), вначале определяем падение напряжения в линии при холостом ходе линии от тока /В2 и затем к полученному результату геометрически прибавляем падение напряжения в ней от тока нагрузки /2.
У конца вектора Uф2 строим треугольник abc падения напряжения в активном и индуктивном сопротивлениях от тока /B2. Складывая геометрически вектор полного падения напряжения ас с вектором UФ2, получаем вектор напряжения в начале линии при холостом ходе Uф01. Затем, пристраивая к концу этого вектора треугольник cde падения напряжения в сопротивлениях R и X от тока нагрузки /2, получаем искомый вектор напряжения в начале линии при нагрузке, т. е. Uф1.
Таким образом, вектор полного падения напряжения от тока IЛв сопротивлениях линии R и X будет равен ae, а его продольная и Iпоперечная составляющие соответственно ∆Uф = af и δUФ = ef. Искомый вектор тока в начале линии /1 находим геометрическим сложением вектора /л и вектора емкостного тока /В| = Uф1В/2, «отложенного от точки 0 перпендикулярно вектору напряжения Uф1. Искомый угол сдвига фаз φ1 между векторами Uф1 и I1 показан на диаграмме.
Дата добавления: 2015-03-19; просмотров: 4248;