Дифференциальная токовая защита с промежуточными насыщающимися трансформаторами тока. Принцип действия НТТ. Расчёт тока срабатывания. Реле РНТ-565. Реле ДЗТ-11.

 

Основным элементом реле является насыщающийся трансформатор. Обозначение TLAT.

Насыщающийся трансформатор тока TLAT содержит трехстержневой ферромагнитный сердечник. Воздействую­щая величина (ток I1) поступает в первичную обмотку w1а к вто­ричной w2подключается измерительное максимальное реле тока КА. Характеристика Ip=f{I1) насыщающегося трансформатора зависит от характера изменения тока I1. Если ток I1 cинусоидальный, то маг­нитная индукция в сердечнике изменяется в широких пределах —Bmax<=B<=Bmax. Указанному изменению индукции пропорционально среднее значение ЭДС вторичной обмотки и ток Iр в реле. В этом случае НТТ действует как обычный трансформатор тока. Апериодическая слагающая насыщает магнитопровод и изменяет режим работы НТТ.

На рисунке показан случай, ког­да ток iбр (бросок тока намагничивания включаемого силового трансформатора) из-за апериодической слагающей полностью смещен относительно оси времени. Прохождение такого тока по обмотке w1НТТ сопровождается изменением индукции только в пределах +BS>=B>=+Br. Поэтому среднее значение ЭДС вторич­ной обмотки и ток в реле получаются намного меньшими, несмот­ря на то что ток Iбр.max>Im1. Обмотки wK' и wK" предусмотрены для усиления действия апериодической слагающей.  

 

Насыщающиеся трансфор­маторы тока, применяемые в реле, отличаются от рассмотренных НТТ числом первичных обмоток. На магнитопроводе НТТ ре­ле РНТ-565 кроме основной рабочей обмотки Wраб(w1) размещены до­полнительные обмотки. У реле РНТ-565 они используются как уравнительные Wур I и WурII при неравенстве сравниваемых токов. Обмотки Wраб, Wур I и WурII выполнены секциони­рованными с отводами для возможности дискретного изменения параметров реле. Во всех обмотках НТТ, кроме вторичной w2, предусмотрено пере­ключение чисел витков для изменения уставок срабатывания реле.

Принципиальная схема защиты трансформатора с ТLАТ в однофазном изображении

Реле РНТ-565 применяются в том случае, если чувствительность токовой от­сечки недостаточна. При этом требуемую чувствительность защита имеет обычно на двухобмоточных трансформаторах мощностью менее 25 МВА.

Предварительное определение то­ка срабатывания выполняется по двум условиям

1. По условию отстройки от броска тока намагничивания:

Ic.з.>=1,3.*Iт.ном.

2. По условию отстройки от максимального первичного тока небаланса.

При этом учитывается, что для защиты с НТТ коэффициент kап=1,0, а составляющая тока небаланса Dfвр в первом приближе­нии не учитывается благодаря соответствующему выбору числа витков уравнительных обмоток НТТ,

Принимается большее из двух полученных значений тока срабаты­вания и производится предварительная проверка чувствительности.

Расчетным по чувствительности является двухфазное к. з. на стороне низшего напряжения в минимальном режиме работы пи­тающей системы и при максимальном сопротивлении защищаемого трансформатора.

Если это условие обеспечивается, то расчет параметров защиты продолжают. Выбирают схему сое­динения трансформаторов тока и их коэффициенты трансформа­ции, определяют число витков дифференциальной Wдиф (Wраб) и уравнительных WУРI и WУРII обмоток исходя из принятого значения тока срабатывания, магнитодвижущей силы срабатывания Fc.р. и условия полного выравнивания

В ряде случаев чувствительность защиты с реле РНТ может оказаться недостаточной. В таких случаях диф­ференциальная защита выполняется посредством реле с торможе­нием.

3. Дифференциальная токовая защита на основе реле с магнит­ным торможением.

Для дифференциальной защи­ты трансформаторов выпускаются реле с магнитным торможением типа ДЗТ-11.В реле ДЗТ-11 используется НТТ с дополнительной обмоткой управления, которая называется тормозной обмоткой. Обмотка управления предназначена для изменения характеристики НТТ. Дополнительный ток Iу, протекающий по обмотке управления изменяет степень намагничивания НТТ. С увеличением тока Iу, степень намагничивания увеличивается. Ток небаланса, протекающий по обмотке реле при переходном процессе уменьшается.

Ток срабатывания защиты c реле ДЗТ-11 зависит от числа витков и значения то­ка тормозной обмотки. От­стройка от бросков тока намагничивания достигается выбором тока Iс.з min по условию

Ic.з.>=kотс.*Iт.ном. (1).

Коэффициент отстройки kотс принимается рав­ным 1,5, так как реле ДЗТ-11 имеет худшие, чем реле РНТ, пара­метры в отношении отстройки от неустановившихся токов из-за отсутствия в НТТ реле короткозамкнутой обмотки. Далее расчет витков НТТ реле и максимального первичного тока небаланса Iнб.рсч max1 выполняется, как и для реле РНТ. Дополнением к этому расчету является вы­бор числа витков тормозной обмотки Wтрм, обеспечивающих от­стройку от Iнб.рсч max1.

Общая оценка дифференциальных защит трансформаторов. Дифференциальные защиты обеспечивают быстрое и селективное отключение повреждений в зоне, охватываемой трансформаторами тока. Рекомендуется применять дифференциальную защиту на оди­ночно работающих трансформаторах мощностью Рт>=6,3 МВ-А и на трансформаторах мощностью Рт>=4 МВ-А, работающих парал­лельно. Дифференциальная защита устанавливается также на трансформаторах мощностью Рт=:1 ...4 МВ-А в том случае, если: токовая отсечка не удовлетворяет требованиям чувствительности, а максимальная токовая защита имеет выдержку времени tс.з.>>0,5 с; трансформатор установлен в районе, подверженном земле­трясениям.

При выборе схемы дифференциальной защиты необходимо прежде всего рассмотреть возможность применения наиболее про­стой из дифференциальных защит — дифференциальной токовой отсечки. Только в случае ее недостаточной чувствительности сле­дует использовать реле РНТ. Защиты с реле, имеющими торможе­ние, наиболее сложны, и их применение оправдано только невоз­можностью отстройки защиты без торможения от установившихся значений максимального тока небаланса при внешних коротких за­мыканиях.

Дифференциальная токовая защита имеет тот недостаток, что может отказать из-за недостаточной чувствительности при внут­ренних коротких замыканиях, например витковых. Это вызывает необходимость устанавливать наряду с дифференциальной и газо­вую защиту.


Построить векторную диаграмму напряжений для сетей до 110 кВ, расчет режима по данным начала сети.

Продольная составляющая паде­ния напряжения ∆U12К = BC'- это проекция падения на­пряжения на действительную ось или на U1. Поперечная составляющая падения напряжения δU12К = AC' - это про­екция падения напряжения на мнимую ось. Один и тот же вектор падения напряжения AB проектируется на различ­ные оси. Поэтому

∆U12Н ≠ ∆U12К , δU12Н ≠ δU12К

Если выразить ток в линии через известные в данном случае мощность в начале продольной ветви линии S12Н и U1 то получим выражения:

∆U12Н= Р12Н r12 + Q12Н x12/U2 (3.35)

jδU12Н = 12Н x12 - Q12Н r12)/U2 (3.36)

Напряжение в конце линии.

U2 = U1 - ∆U12Н - jδU12Н (3.37)

где U1 известно; ∆U12Н, jδU12Н определяются из (3.35), (3.36).

Модуль и фаза U2 равны

U2 = √ (U1 - ∆U12Н)2 + (δU12Н)2

tgδ= δU12Н/(U1 + ∆U12Н)

Определение напряжения в конце линии по данным на­чала по выражениям (3.37), а также (3.35), (3.36).

Векторная диаграмма. Напряжение Uф1, определится как геометрическая сумма век­торов напряжения конца линии Uф2 и падения напряжения ∆Uф, вызванного током IЛв сопротивлениях R и X линии

Uф1 = Uф2 + Uф, где

Uф = IЛ(R + jX) = (lB2 + I2)(R + jX) = lB2(R + jX) + I2(R + jX)=Uф0 + Uф2.

Полное падение напряжения в нагруженной линии, как видно из формулы, складывается из падения напряжения при хо­лостом ходе линии ∆Uф0, вызванного током IВ2, и падения напря­жения ∆Uф2, от тока нагрузки /2.

Переходя к графическому решению (рис. 10-7), вначале опре­деляем падение напряжения в линии при холостом ходе линии от тока /В2 и затем к полученному результату геометрически прибавляем падение напряжения в ней от тока нагрузки /2.

У конца вектора Uф2 строим треугольник abc падения напряже­ния в активном и индуктивном сопротивлениях от тока /B2. Скла­дывая геометрически вектор полного падения напряжения ас с вектором UФ2, получаем вектор напряжения в начале линии при холостом ходе Uф01. Затем, пристраивая к концу этого вектора треугольник cde падения напряжения в сопротивлениях R и X от тока нагрузки /2, получаем искомый вектор напряжения в начале линии при нагрузке, т. е. Uф1.

Таким образом, вектор полного падения напряжения от тока IЛв сопротивлениях линии R и X будет равен ae, а его продольная и Iпоперечная составляющие соответственно ∆Uф = af и δUФ = ef. Искомый вектор тока в начале линии /1 находим геометрическим сложением вектора /л и вектора емкостного тока /В| = Uф1В/2, «отложенного от точки 0 перпендикулярно вектору напряжения Uф1. Искомый угол сдвига фаз φ1 между векторами Uф1 и I1 показан на диаграмме.

 

 








Дата добавления: 2015-03-19; просмотров: 4110;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.