Инструменты дескриптивного анализа

 

Для описания информации, полученной на основе выборочных измерений, широко используется две группы мер. Первая включает меры «центральной тенденции», или меры, которые описывают типичного рес­пондента или типичный ответ. Вторая включает меры вариации, или ме­ры, описывающие степень схожести или несхожести респондентов или ответов с «типичными» респондентами или ответами.

Существуют и другие описательные меры, например меры асим­метрии (насколько найденные кривые распределения отличаются от нор­мальных кривых распределения). Однако они используются не столь час­то, как вышеупомянутые, и не представляют особого интереса для заказ­чика.

Ниже дается только краткая характеристика указанных мер. Более подробную информацию можно получить из книг по математической статистике, например [9], [10].

К числу мер центральной тенденции относятся мода, медиана и средняя.

Мода характеризует величину признака, появляющуюся наиболее часто по сравнению с другими величинами данного признака. Мода но­сит относительный характер, и необязательно, чтобы большинство рес­пондентов указало именно эту величину признака.

Медиана характеризует значение признака, занимающее срединное место в упорядоченном ряду значений данного признака.

Третьей мерой центральной тенденции является средняя величина, которая чаще всего рассчитывается как средняя арифметическая величина. При ее вычислении общий объем признака поровну распределяется между всеми единицами совокупности.

Видно, что степень информативности средней величины больше, чем медианы, а медианы — моды.

Однако рассмотренные меры не характеризуют вариацию ответов на какой-то вопрос или, говоря другими словами, несходство, различие респондентов или измеренных характеристик. Очевидно, что помимо знания величин мер центральной тенденции важно установить, насколь­ко близко к этим величинам расположены остальные полученные оцен­ки. Обычно используют три меры вариации: распределение частот, раз­мах вариации и среднее квадратическое отклонение.

Распределение частот представляет в табличной или графической форме число случаев появления каждого значения измеренной характе­ристики (признака) в каждом выбранном диапазоне ее значений. Распре­деление частот позволяет быстро сделать выводы о степени подробности результатов измерений.

Размах вариации определяет абсолютную разность между макси­мальным и минимальным значениями измеренного признака. Говоря другими словами, это разница между конечными точками в распределе­нии упорядоченных величин измеренного признака. Данная мера опре­деляет интервал распределения значений признака.

Среднее квадратическое отклонение является обобщающей статисти­ческой характеристикой вариации значений признака. Если эта мера ма­ла, то кривая распределения имеет узкую, сжатую форму (результаты из­мерений обладают высокой степенью схожести); если мера велика, то кривая распределения имеет широкий, растянутый вид (велика степень различия оценок).

Ранее было отмечено, что выбор шкалы измерений, а следователь­но, типа вопросов в опросном листе предопределяют количество полу­чаемой информации. Подобным образом, количество информации, полу­чаемой при использовании рассмотренных выше мер, является различ­ным. Общим правилом является то, что статистические меры дают воз­можность получить больше информации при применении наиболее ин­формативных шкал измерений. Выбор шкалы измерений предопределяет выбор статистических мер. Например, один из вопросов демографиче­ского исследования, при проведении которого использовалась шкала на­именований, касался национальности. Русским был присвоен код 1, ук­раинцам — 2, татарам — 3 и т.д. В данном случае, конечно, можно вы­числить среднее значение. Но как интерпретировать среднюю нацио­нальность, равную, скажем, 5,67? Для вычисления средних надо исполь­зовать интервальную шкалу или шкалу отношений. Однако в нашем примере можно использовать моду.

Что касается мер вариации, то при использовании номинальной шкалы применяется распределение частот, при использовании шкалы порядков — кумулятивное распределение частот, а при использовании интервальной шкалы и шкалы отношений — среднее квадратическое от­клонение.








Дата добавления: 2015-03-19; просмотров: 724;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.