и измерение электрических величин
Измерение электрических величин на промышленных предприятиях обеспечивает контроль технологических процессов (ТП), контроль за соблюдением установленного режима работы, контроль работы оборудования, контроль изоляции электрооборудования и электрических сетей, условия, позволяющие обслуживающему персоналу ориентироваться при аварийных режимах.
Средства измерений электрических величин должны удовлетворять требованиям по классу точности измерительных приборов (не ниже 2,5), пределам измерений приборов. Измерительные приборы должны быть установлены в пунктах, откуда осуществляется управление [7].
Измерение тока, напряжения и мощности производится в цепях всех напряжений, где оно необходимо для систематического контроля ТП или оборудования. На подстанциях допускается измерение напряжения только на стороне низшего напряжения, если установка трансформаторов напряжения на стороне ВН не требуется для других целей. Измерение напряжения должно производиться также в цепях силовых преобразователей, аккумуляторных батарей, зарядных и подзарядных устройств, в цепях дугогасящих реакторов. Измерение мощности производится в цепях генераторов активной и реактивной мощности, в цепях синхронных компенсаторов – реактивной мощности, у понижающих трансформаторов в зависимости от напряжения – активной и реактивной мощности.
Учет активной и реактивной мощности и энергии, а также контроль качества электроэнергии для расчетов между энергосберегающей организацией и потребителем производится, как правило, на границе балансовой принадлежности электросети. Учет электроэнергии осуществляется на основе измерений электрической энергии с помощью счетчиков, а также информационно-измерительных систем. Применение автоматизированных систем учета и контроля электроэнергии повышает эффективность учета. В электроустановках используют различные многофункциональные счетчики. Их можно использовать для ежедневной и ежемесячной фиксации потребления электроэнергии, фиксации потребления электроэнергии на первое число месяца, после перерыва питания, 30-минутного значения мощности, попыток несанкционированного доступа к памяти, изменения сезонного времени и др.
Учет активной электроэнергии должен обеспечивать возможность составления балансов электроэнергии для потребителей, контроль за соблюдением потребителями заданных режимов потребления и балансов электроэнергии, расчетов потребителей за электроэнергию по действующим тарифам (в том числе многоставочным и дифференцированным), возможность управления электропотреблением. Учет реактивной электроэнергии должен обеспечивать возможность определения количества реактивной электроэнергии, полученной потребителем от электроснабжающей организации или переданной ей, если по этим данным производятся расчеты или контроль соблюдения заданного режима работы компенсирующих устройств.
При определении количества электроэнергии учитываются только коэффициенты трансформации измерительных трансформаторов, Измеряемая электроэнергия равна разности показаний счетного механизма счетчика, умноженной на коэффициент трансформации, введение других поправочных коэффициентов не допускается.
По схеме подключения к электрической цепи счетчики делятся на устройства прямого включения и трансформаторные. Кроме того, счетчики бывают аналоговые и электронные. До настоящего времени широко распространены аналоговые индукционные счетчики типа САЗУ-670М, СР4У-И673 и другие для измерения активной и реактивной энергии. В то же время получили широкое распространение электронные счетчики [17]. Измерение энергии электронными счетчиками основано на преобразовании аналоговых входных сигналов переменного тока и напряжения в счетный импульс или код. Структурная схема электронного счетчика на основе амплитудной и широтно-импульсной модуляции приведена на рис. 9.17.
Счетчики электронные многотарифные типа СЭА32 различного исполнения предназначены для измерения активной энергии в трехфазных сетях переменного тока частотой 50 Гц и используются в качестве датчика приращения энергии в АСУ контроля и учета электрической энергии (АСКУЭ) и телеизмерения мощности.
Счетчики типа СЭ3000 используются для измерения активной и реактивной энергии и мощности по трем фазам в трехфазных трех- и четырехпроводных цепях переменного тока и организации многотарифного учета (количество тарифов – 4) электроэнергии на промышленных предприятиях и объектах.
Рис. 9.17. Структурная схема электронного счетчика
Схемы прямого подключения трехфазных счетчиков в электроустановках напряжением 380/220 В в четырехпроводных сетях, рассчитанные на номинальные токи 5; 10; 20; 50 А, представлены на рис. 9.18, включение счетчика через измерительные трансформаторы на рис. 9.19. Схема включения выполнена десятипроводной.
Рис. 9.18. Схема включения прямоточного счетчика СЭТ4-1
Рис. 9.19. Схема включения трехэлементного счетчика типа СА4У-И672М в четырехпроводную сеть с раздельными цепями тока и напряжения
Подключение каждого из трех измерительных элементов счетчика требует обязательного соблюдения полярности подключения токовых цепей и соответствия их своему напряжению. Обратная полярность включения первичной обмотки TA или его вторичной обмотки вызывает отрицательный вращающий момент, действующий на диск счетчика. Схема обеспечивает нормируемую погрешность измерений. Подключение нулевого провода обязательно.
Схемы включения счетчика реактивной энергии типа СР4У-И673 и счетчика активной энергии не отличаются (рис. 9.20). Токовые цепи этих счетчиков соединяются последовательно, цепи напряжения – параллельно. Схемы внутренних соединений счетчиков реактивной энергии и активной различны. За счет схемы внутренних соединений катушек, рассчитанных на напряжение 380 В, выполняется дополнительный 90°-й фазовый сдвиг между магнитными потоками.
Трехфазные трансформаторные универсальные счетчики СЭТА и СЭТ4 предназначены для измерения активной и реактивной энергии в трехфазных трех- и четырехпроводных цепях переменного тока 380/220 В, 50(60) Гц и используются для нужд энергетики на напряжение 100/57,7 В, а счетчики СТ1, СЭТ3, «ТРИО», «СОЛО» – для учета потребления активной и реактивной энергии в быту и на производстве.
Рис. 9.20. Схема включения счетчиков для измерения активной
и реактивной энергии в сети напряжением 380/220 В
Счетчики ЦЭ6807 предназначены для измерения активной энергии в однофазных двухпроводных сетях переменного тока 220 В, 40(60) Гц, могут использоваться в качестве датчиков приращения потребления энергии для дистанционных информационно-измерительных систем учета и распределения АСУКУЭ, там же нашли применение и счетчики ЭСч ТМ201. Однофазные однотарифные счетчики ЦЭ6807П, СЕ101, СЕ200, а также многотарифные счетчики СЕ102, СЕ201 предназначены для учета электроэнергии в бытовом и мелкомоторном секторах электропотребления, имеют защиту от недоучета и хищений электроэнергии.
Трехфазные однотарифные счетчики ЦЭ6803В, ЦЭ6804, СЕ300, СЕ302 предназначены для учета электроэнергии в трехфазных цепях переменного тока в бытовом, мелкомоторном и промышленном секторах электропотребления, а многотарифные ЦЭ6822, СЕ301, ЦЭ6850М, СЕ303, СЕ304 – в промышленных секторах электропотребления.
Счетчики электроэнергии многофункциональные микропроцессорные типов ЦЭ6850, ЦЭ6822,и другие подобных модификаций предназначены для измерения активной и реактивной электроэнергии и мощности в зависимости от функционального назначения. Функциональный набор параметров может быть следующий [1]:
· коммерческий учет межсистемных перетоков, выработки и потребления электроэнергии в энергосистемах, на сетевых и промышленных предприятиях;
· учет мощности в региональных, территориальных сетевых и промышленных предприятиях, на предприятиях малого и среднего бизнеса, в жилищно-коммунальной среде;
· учет электроэнергии в промышленном и бытовом секторе (жилых и общественных зданиях, коттеджах, дачах, гаражах) при снабжении потребителей от трехфазной сети, в промышленных помещениях при снабжении потребителей от однофазной сети;
· технический и коммерческий учет генерации и потребления активной и реактивной энергии;
· регистрация суточного графика получасовых мощностей (нагрузок) с глубиной хранения до 45 суток;
· измерение мгновенных значений первичных параметров сети ( );
· измерение реактивной мощности в составе АСКУЭ.
Измерительные преобразователи служат для преобразования измеряемой электрической величины (ток, напряжение, мощность, частота) в унифицированный выходной сигнал постоянного тока или напряжения или в частоту. Измерительные преобразователи применяются в системах автоматического регулирования и управления объектов электроэнергетики в различных отраслях промышленности, а также для контроля текущего значения измеряемых величин.
В области электроизмерительной техники высшего класса сложности применяются измерительно-вычислительные комплексы (ИВК), информационные измерительные системы (ИИС), предназначенные для получения, преобразования, хранения и представления измерительной информации.
Измерительно-вычислительный комплекс измеряет постоянные напряжения и выполняет преобразование аналоговых сигналов в цифровой код и цифро-аналоговое преобразование сигналов, поступающих по входным каналам.
Многофункциональные ИИС типа К734 предназначены для сбора, преобразования, измерения, представления, регистрации и запоминания информации различных параметров электрических сигналов.
К современным многофункциональным преобразователям относятся преобразователи типа ПЦ 6806, предназначенные для измерения активной и реактивной энергии в прямом и обратном направлениях (потребленной и возвращенной), частоты, тока, напряжения, активной и реактивной мощностей по каждой фазе сети. Они применяются для коммерческого и технического учета электроэнергии в составе АСКУЭ. В зависимости от назначения выполняют функции телеуправления, телесигнализации, индикацию измеренных и вычисленных параметров на встроенном цифровом индикаторе, фиксацию максимальной мощности в каждой тарифной зоне, архивирование параметров и событий с отметками реального времени и др.
Вопросы для самоконтроля
1. Какие виды погрешностей имеют измерительные трансформаторы тока и от чего они зависят?
2. Назовите основные конструктивныеособенности применяемых трансформаторов тока.
3. Объясните принцип работы измерительного трансформатора постоянного тока.
4. Какие существуют типы трансформаторов напряжения икаковы их особенности при применении в измерительных схемах?
5. Назовите классы точности трансформаторов напряжения и тока.
6. Назовите типы счетчиков, применяемых для учета активной и реактивной энергии.
7. Какие типы счетчиков применяются в системах АСКУЭ?
8. Назовите типы многофункциональных преобразователей.
9. Нарисуйте векторные диаграммы трансформатора напряжения.
10. Нарисуйте векторные диаграммы трансформатора тока.
11. Какие виды погрешностей имеют трансформаторы напряжения?
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ
1. Справочник по электроснабжению и электрооборудованию промышленных предприятий и общественных зданий / под общ. ред. С.И. Гамазина, Б.И. Кудрина, С.А. Цырука. М.: Издат. дом МЭИ, 2010. 745 с.: ил.
2. Ополева Г.Н. Схемы и подстанции электроснабжения: справочник/ Г.Н. Ополева: М.: ФОРУМ: ИНФРА-М, 2006. 480 с.
3. Кужеков С.Л. Практическое пособие по электрическим сетям и электрооборудованию / С.Л. Кужеков, С.В. Гончаров. 4-е изд., доп. и перераб. Ростов н/Д.: Феникс, 2010. 492 с.: ил.
4. Герасименко А.А. Передача и распределение электрической энергии / А.А. Герасименко, В.Т. Федин 2-е изд. Ростов н/Д. 2008. 715 с.
5. Герасименко А.А. Передача и распределение электрической энергии: учеб. пособие / А.А. Герасименко, В.Т. Федин. 3-е изд., перераб. М.: КНОРУС, 2012. 648 с.
6. Миронов Ю.М. Электрооборудование и электроснабжение электротермических, плазменных и лучевых установок: учеб. пособие для вузов. Ю.М. Миронов, А.Н. Миронова. М.: Энергоатомиздат, 1991. 376 с.: ил.
7. Справочник по проектированию электроснабжения / под ред. Ю.Г. Барыбина и др. М.: Энергоатомиздат, 1990. 576 с.
8. Справочник по проектированию электрических сетей и электрооборудования / под ред. Ю.Г. Барыбина и др. М.: Энергоатомиздат, 1991. 464 с.: ил.
9. Васильев А.А. Электрическая часть станций и подстанций: учебник для вузов / А.А. Васильев, И.П. Крючков, Е.Ф. Наяшкова и др.; под ред. А.А. Васильева. 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1990. 576 с.: ил.
10. Электрооборудование и электроснабжение электротермических установок: метод. указания к лаб. работам / сост. А.Н. Ми-ронова, Э.Л. Львова; Чуваш. ун-т. Чебоксары, 2011. 48 с.
11. Баптиданов Л.Н. Основное электрооборудование, схемы и конструкции распределительных устройств: учебник для энергетических техникумов / Л.Н. Баптиданов, В.И. Тарасов. Т.1. М.: Гос. Энергетич. изд-во, 1947. 399 с.
12. Электрооборудование электросварочных установок: метод. указания к лаб. работам / сост. Ю.П. Ананьин, Ю.М. Петросов. Чебоксары: Изд-во Чуваш. ун-та, 2013. 48 с.
13. Орлов Л.Л. Оптимизация структуры и технико-экономи-ческих характеристик цифровых подстанций / Релейная защита автоматизация, 02.06.2012. С. 66.
14. Дарьян Л.А. Цифровые измерительные трансформаторы. Новые подходы к разработке измерительного оборудования / Л.А. Дарьян, А.П. Петров, Н.Н. Дорофеев, А.В. Козлов. Релейная защита автоматизации, 04.12.2012. С.44.
15. Андреев В.А. Релейная защита и автоматика систем электроснабжения / В.А. Андреев. М.: Высш. шк., 2008. 640 с
16. Васильева В.Я. Эксплуатация электрооборудования электрических станций и подстанций: учеб. пособие / В.Я. Васильева, Г.А. Дробиков, В.А. Лагутин. Чебоксары: Изд-во Чуваш. ун-та, 2000. 864 с.
17. Миронова А.Н. Рациональная эксплуатация электротехнологических установок: учеб. пособие / А.Н. Миронова, И.А. Лавин. Чебоксары: Изд-во Чуваш. ун-та, 2008. 210 с.
18 . Правила устройства электроустановок. 7-е изд. СПб.: ДЕАН, 2004.
19. ГОСТ 7746-2001. Трансформаторы тока. Общие технические условия. М.: Изд-во стандартов, 2003.
20. ГОСТ 1983-2001. Трансформаторы напряжения. Общие технические условия. М.: Изд-во стандартов, 2003.
21. ГОСТ Р-52373-2005. Провода самонесущие изолированные и защищенные для воздушных линий электропередачи.
22. ТУ 16. К10-017-2003. Провода с защитной изоляцией для воздушных линий электропередачи напряжения 35 кВ / ОАО «Севкабель». 2003.
23. Кудрин Б.И. Электроснабжение промышленных предприятий: учебник для студентов высш. учеб. заведений / Б.И. Кудрин. 2-е изд. М.: Интермет Инжиниринг, 2006. 672 с. ил.
24. Кнорринг Г.М. Справочная книга для проектирования электрического освещения/ Г.М. Кнорринг, И.М. Фадин, В.Н. Си-доров. СПб.: Энергоатомиздат, 1992. 288 с.
25. Свенчанский А.Д. Электротехнологические промышленные установки: учебник для вузов / И.П. Евтюкова, Л.С. Кацевич, Н.М. Некрасова, А.Д. Свенчанский; под ред. А.Д. Свенчанского. М.: Энергоатомиздат, 1982. 399 с. ил.
26. Милютин В.С. Источники питания для сварки: учеб. пособие / В.С. Милютин, В.А.Коротков. Челябинск: Металлургия Урала, 1999. 368 с.
27. Верещаго Е.Н. Схемотехника инвертоных источников питания для дуговой сварки: учеб. пособие / Е.Н. Верещаго, В.Ф. Квасницкий, Л.И. Мирошниченко, И.В. Пентегов. Николаев: УГМТУ, 2000. 283 с.
28. Макарова И.В. Сварочный трансформатор или инвертор, что дороже? // И.В. Макаров. Ритм. 2009. №8 (46). Окт. С. 27.
29. Специализированные каталоги группы компаний «Вебер Комеханикс». 2007. №2.
30. Львова Э.Л. Оценка вероятностных характеристик высших гармоник тока группы дуговых электропечей / Э.Л. Львова. Автоматизированные электротехнологические установки и системы. Чебоксары: Изд-во Чуваш. ун-та, 1989. С. 29-34.
31. Львова Э.Л. Анализ гармонического состава процесса плавления группы ДСП / Э.Л. Львова. Межреспубликанский науч.-техн. семинар литейщиков «Современные технологические процессы получения высококачественных отливок, повышения стойкости литейной оснастки и режущего инструмента». Чебоксары, 1987. С. 72.
32. Львова Э.Л. Определение реактивной мощности дуговых сталеплавильных печей / Э.Л. Львова, Н.Б. Иоша, Г.А. Немцев. Промышленная энергетика. 1991. №5. С. 39-42.
33. Львова Э.Л. Обоснование и разработка метода расчета мощности компенсирующих устройств при резкопеременной нагрузке / Э.Л. Львова, Г.А. Немцев, В.П. Шуцкий // Международный симпозиум «Горная техника на пороге 21 века». М., 1996. С. 469-480.
34. Львова Э.Л. Вопросы компенсации реактивной мощности в сетях с дуговыми печами. / Э.Л. Львова, А.Н. Миронова // 8-я Междунар. конф. по проблемам горной промышленности, строительства и энергетики. Тула: ТулГУ, 2012. С. 503 – 508.
35. Фишлер Я.Л. Преобразовательные трансформаторы / Я.Л. Фишлер, Р.Н. Урманов. М.: Энергия, 1974. 224 с.: ил.
36. Чунихин А.А. Аппараты высокого напряжения / А.А. Чунихин, М.А. Жаворонков. М.: Энергоатомиздат, 1985.
37. Свенчанский А.Д. Источники питания и высоковольтные выключатели электротермических установок / А.Д. Свенчанский, М.Д. Бершицкий // VIII Всесоюз. совещание по электротермии и электротермическому оборудованию (Чебоксары, 3-5 июля 1985): тез. докладов: М.: Информэлектро, 1985. С.147-148.
38. Электроборудование электротехнологических установок: метод. указания к курсовому проектированию / сост. А.Н. Миронова, Е.Ю.Смирнова; Чуваш. ун-т. Чебоксары, 2003. 64 с.
39. Вагин Г.Я. Электромагнитная совместимость дуговых печей и систем электроснабжения / Г.Я. Вагин, А.А. Севастьянов, С.Н. Юртаев // Тр. Нижегород. гос. техн. ун-та им. Р.Е. Алексеева. 2010. № 2 (81). С. 202 – 210.
40. Игнатов И.И. Математическое моделирование электрических режимов дуговой сталеплавильной печи / И.И. Игнатов, А.В. Хаинсон // Электричество. 1985. № 8.
41. Драгунов В.К. Современное развитие ЭЛС/ В.К. Драгунов, А.Л. Гончаров// Специализированный журнал. 2009. № 8 (46). С. 28-30.
42. Львова Э.Л. Эффективное применение компенсирующих устройств в условиях промышленных предприятий / Э.Л. Львова, А.Н. Миронова // Социально-экономическое развитие России: опыт, перспективы и инновации: сб. науч. тр. / под ред. профессора О.Г. Максимовой. Чебоксары: ЧИЭМ СПб ГПУ, 2009. С. 286-290, 305.
Дата добавления: 2014-12-18; просмотров: 3936;