Кинематика вращательного движения. Пусть некоторая точка движется по окружности радиуса r
Пусть некоторая точка движется по окружности радиуса r. Изменение положения точки в пространстве за промежуток времени Dt определяется углом поворота (рис. 3). Элементарный поворот на угол можно рассматривать как вектор . Модуль вектора равен углу поворота, а его направление совпадает с направлением поступательного движения острия правого винта, головка которого вращается в направлении движения точки по окружности, т.е. подчиняетсяправилу правого винта.
Рис. 3
Угловой скоростью называется векторная величина, равная пределу отношения угла поворота к промежутку времени Dt, за который этот поворот произошел, при стремлении Dt к нулю:
,
где – первая производная от функции угла поворота радиус-вектора по времениt. Эту производную принято обозначать, как .
Вектор направлен вдоль оси вращения в соответствии с правилом правого винта (рис. 3).
Угловым ускорением называется векторная величина, равная пределу отношения изменения угловой скорости к промежутку времени Dt, за который это изменение произошло, при стремлении Dt к нулю:
,
где – первая производная от функции по времениt,
– вторая производная от функции по времениt.
Эти производные принято обозначать соответственно в виде: и .
Вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном вращении направление вектора совпадает с направлением вектора угловой скорости , а при замедленном – противоположно ему.
Кинематические параметры поступательного и вращательного движения связаны между собой. Связь скорости и угловой скорости (см. рис. 3) определяется следующим образом: .
В векторном виде эту связь для векторов и можно записать с помощью векторного произведения: .
Ускорение а также можно выразить через угловые параметры, разложив ускорение а на две составляющие и , то есть: .
Тангенциальная составляющая выражается через угловое ускорение :
,
а нормальная составляющая – через угловую скорость :
.
Тогда ускорение: .
При равномерном вращении угловая скорость не изменяется. В этом случае вращение можно характеризовать периодом вращенияT , то есть временем, за которое точка совершает один полный оборот.
Угловая скорость равномерного вращения связана с периодом вращения:
.
Частотой вращенияn называется число полных оборотов, совершаемых телом в единицу времени. При равномерном вращении:
, откуда .шо
Автор третьего начала термодинамики Вальтер Нернст в часы досуга разводил карпов. Однажды кто-то глубокомысленно заметил:
– Странный выбор. Кур разводить и то интересней.
Нернст невозмутимо ответил:
– Я развожу таких животных, которые находятся в термодинамическом равновесии с окружающей средой. Разводить теплокровных – это значит обогревать на свои деньги мировое пространство.
Кавендиш, один из величайших физиков-экспериментаторов своего времени, вел очень уединенный и замкнутый образ жизни. У него совершенно не было друзей, женщин же он панически боялся и со своей прислугой женского пола не вступал ни в какие разговоры, а оставлял на столе записки с поручениями. После его смерти остался миллион фунтов в банке и двадцать пачек рукописей с описанием проведенных им уникальных исследований, которые он при жизни считал ненужным публиковать.
Ньютон очень не любил отвлекаться от своих занятий, особенно по бытовым мелочам. Чтобы выпускать и впускать свою кошку, не подходя к двери, он прорезал в ней специальную дыру. Когда у кошки появились котята, то он проделал в двери для каждого котенка по дополнительному меньшему отверстию.
Давида Гильберта (1862...1943) спросили об одном из его бывших учеников.
– Ах, этот-то? – вспомнил Гильберт. – Он стал поэтом. Для математики у него было слишком мало воображения.
Резерфорд говорил, что все науки можно разделить на две группы – на физику и коллекционирование марок.
Дата добавления: 2014-12-12; просмотров: 739;