I. Описательная статистика

1. Задачи описательной статистики - классификация данных, постро­ение распределения их частот, выявление центральных тенденций этого распределения и оценка разброса данных относительно средних.

2. Для классификации данных сначала располагают их в возрастаю­щем порядке. Далее их разбивают на классы по величине, интервалы между которыми определяются в зависимости от того, что именно иследователь хочет выявить в данном распределении.

3. К наиболее часто используемым параметрам, с помощью которых можно описать распределение, относятся, с одной стороны, такие величины, как мода, медиана и средняя арифметическая, а с другой -показатели разброса, такие как варианса (дисперсия) и стандартное отклонение.

4. Мода соответствует значению, которое встречается чаще других или находится в середине класса, обладающего наибольшей частотой.

Медиана соответствует значению центрального данного, которое может быть получено после того, как все данные будут расположены в возрастающем порядке.

Средняя арифметическая равна частному от деления суммы всех данных на их число.

Распределение считается нормальным, если кривая распределения имеет колоколообразный вид, а все показатели центральной тенденции совпадают, что свидетельствует о симметричности распределения.

5. Диапазон распределения (размах вариаций) равен разности между наибольшим и наименьшим значениями результатов.

6. Среднее отклонение-это более точный показатель разброса, чем диапазон распределения. Для расчета среднего отклонения вычисляют среднюю разность между всеми значениями данных и средней арифме-


Cinciiniu тики и обработки дачных 313

тической, или, упрощенно,

Среднее отклонение =

7. Еще один показатель разброса, вычисляемый из среднего откло­нения,-это варианса (дисперсия), равная среднему квадрату разностей между значениями всех данных и средней:

Yd2 Варианса = ——. п

8. Наиболее употребительным показателем разброса служит стан­дартное отклонение, равное квадратному корню из вариансы. Таким образом, это квадратный корень из суммы квадратов всех отклонений от средней:

Стандартное отклонение = или

п V п - 1

9. Важное свойство стандартного отклонения заключается в том. что независимо от его абсолютной величины в нормальном распределении оно всегда соответствует одинаковому проценту данных, располага­ющихся по обе стороны от средней: 68% результатов располагаются в пределах одного стандартного отклонения в обе стороны от средней, 95%-в пределах двух стандартных отклонений и 99,7%-в пределах трех стандартных отклонений.

10. С помощью перечисленных выше показателей можно осущест­вить оценку различий между двумя или несколькими распределениями, позволяющую проверить, насколько эти различия могут быть экстра­полированы на популяцию, из которой взяты выборки. Для этого применяют методы индуктивной статистики.








Дата добавления: 2014-12-09; просмотров: 1609;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.