Математика на службе у гидравлики
Речь о том, как математика помогает справлять людям большую и малую нужду.
Наверное, у многих горожан время от времени в ванной при включении воды в трубах раздаются столь противные гудящие звуки, что приходится ловить такое положение крана, при котором гул пропадает. А теперь представьте гидро- или теплопровод диаметром не в одну сотню раз больше того, что в вашей квартире.
Однажды на Манхэттене рвануло на теплотрассе так, что столб кипятка бил на четыре десятка метров вверх, а Нью-Йорк оказался вообще парализован в результате последствий аварии.
Впрочем, в России положение с теплоэнергетикой вряд ли лучше. По мнению специалистов, износ тепловых коммуникаций и вообще трубопроводных сетей в среднем не ниже 60%.
Причиной износа являются в том числе различные виды вибраций и так называемые гидравлические удары. Сильный поток жидкости в какой-то момент — особенно в моменты отключений и включений — выходит из-под контроля, с силой ударяет в стенки трубы, далее — разрыв и гейзер в черте мегаполиса. По сути — инсульт и паралич! Поскольку кровеносная сис-
тема — это те же трубы, хоть и эластичные, но и они подчиняются законам гидродинамики.
В сетях технических, если вовремя не перераспределить давление жидкости или газа в частях системы, эта сила находит слабое звено и выплёскивается из заключения со страшной силой.
Кстати, проблемой стабилизации давления в сетях, главным образом водопроводных, в конце XIX века занимался великий русский учёный, основоположник современной гидроаэродинамики, отец русской авиации Николай Егорович Жуковский. Под его руководством при механическом кабинете Московского университета в 1902 году сооружена одна из первых в Европе аэродинамических труб, два года спустя в поселке Качино под Москвой создан первый в мире аэродинамический институт, там же некоторое время спустя при непосредственном участии Жуковского открыта и аэродинамическая лаборатория. По его предложению уже при Советской власти создан Центральный аэро- гидродинамический институт (ЦАГИ), руководителем которого он назначен ещё в годы Гражданской войны.
Среди продолжателей дела Жуковского — в том числе и Королёв со своими учениками. Но особо хотелось бы отметить профессора Хаваса Низамова — кстати, родом из Башкирии, ведь в советское время именно таким самородкам из глубинки свободно открывался торный путь к вершинам отечественного образования и науки. Последователь Королёва, доктор технических наук, заслуженный изобретатель СССР Хавас Низамов разработал нелинейную математическую модель динамических процессов в газовых трубопроводных системах высокого давления со стабилизатором диссипативного (то есть неупорядоченного, хаотического, неравновесного) принципа действия.
Изначально исследования по стабилизации давления в жидких и газовых средах велись в сугубо военных целях, а именно в области ракетостроения. В КБ имени Королёва группа Низамова разработала демпфирующие устройства, которые выравнивали давление и скорости течения жидкостей в трубопроводах космических аппаратов. Сейчас такие системы используются в спутниках, баллистических ракетах с жидкостно-реактивным двигателем.
Хотя изначально математическая модель предназначалась для целей оборонного комплекса, она благополучно нашла и вполне земное применение, в мирных целях. Об этом писали «Аргументы и факты» в связи с катастрофой на Пироговской улице в Москве и журнал «Эксперт».
Стабилизатор — специальная врезка в трубу, которая практически не требует технического обслуживания и электропитания. Устройство позволяет избежать гидроударов (так что общая аварийность сокращается на 70—80%), помогает замедлить внутреннюю коррозию в трубах, сокращает потерю воды в сети.
В будущем применение стабилизаторов давления помогло бы сократить сроки летних отключений горячей воды (для Москвы проблема до сих пор актуальная) — отпала бы необходимость так часто и долго заниматься профилактическим осмотром — и даже совсем отменить их.
А начиналось всё с математической модели.
Дата добавления: 2014-11-29; просмотров: 896;