Оценим статистическую значимость уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента.
Оценку значимости уравнения регрессии проведём с помощью критерий Фишера, для линейной модели справедливо соотношение:
.
Наблюдаемое значение критерий Фишера больше табличного значения для данного уровня значимости и числа степеней свободы и .
Где число уровней ряда, количество параметров при неизвестных.
То есть,
.
Следовательно, уравнение регрессии с вероятностью 0,95 в целом статистически значимо.
Для основного теста на значимость находим расчётное значение Стьюдента:
,
где стандартная ошибка коэффициента регрессии .
Аналогично,
,
стандартная ошибка коэффициента регрессии .
Найденные значения и сравним с табличным значением , где уровень значимости, число степеней свободы. В нашем случае имеем . Тогда,
.
Найдём стандартные ошибки для коэффициентов регрессии.
Выше нашли: .
, .
Следовательно, (основной тест на значимость) с вероятностью 0,95
, то параметр статистически значим,
, то параметр статистически незначим.
Дата добавления: 2014-11-29; просмотров: 1504;