Функции печени. По разнообразию химических процессов и функций, выполняемых клетками печени, этот орган занимает особое положение среди остальных тканей организма.

 

По разнообразию химических процессов и функций, выполняемых клетками печени, этот орган занимает особое положение среди остальных тканей организма.

В первую очередь выделяют биотрансформирующие функции. Через печень проходят два потока крови. Один из них обогащен питательными веществами, поступающими в кровяное русло после их предварительного превращения в ЖКТ в пригодную для транспортировки форму хиломикронов. С этим потоком в печень поступают также лекарственные вещества, пищевые добавки, красители, ароматизаторы, консерванты, присутствующие в пищевых продуктах пестициды, гербициды, остатки кормовых антибиотиков, соли тяжелых металлов и множество других продуктов. Второй поток крови, поступающий в печень из остальных тканей, доставляет как необходимые для организма продукты (белки, липопротеины, остатки питательных веществ), так и отходы метаболизма клеток, выводимые в венозную кровь. Все это многообразие продуктов проходит через печень, где тщательно сортируется и перерабатывается, утилизируя ценные для организма продукты и трансформируя и подготавливая к удалению ненужные или потенциально опасные продукты.

Ведущую роль печень занимает в синтезе ряда белков, производимых только в этом органе и предназначенных для всего организма. Среди таких белков альбумин, глобулины, фибриноген, транс-феррин, церулоплазмин, белки свертываемости крови и т д. Каждый из перечисленных белков играет очень важную роль в организме человека, поэтому нарушение синтеза даже одного из них приводит к развитию патологических состояний. Одновременно с синтезом экспортных белков печень вырабатывает большую группу ферментов и белков, предназначенных для собственных нужд.

Печень обеспечивает потребности всех тканей в продуктах энергетического обмена. При этом выработка энергетических субстратов осуществляется как с учетом валового запроса всего организма, так и индивидуальных потребностей отдельных органов. Например, сердечная и скелетные мышцы предпочитают в качестве основного энергетического субстрата использовать жирные кислоты, а ткани мозга и эритроциты – глюкозу.

С учетом значительных колебаний запросов организма на поставку энергетических субстратов, удовлетворение таких запросов осуществляется с использованием двух независимых систем: 1) комплекса непрерывно функционирующих ферментов, осуществляющих поставку глюкозы и жирных кислот в объемах, удовлетворяющих средние энергетические запросы организма; 2) запасов гликогена (полимерной формы глюкозы), жиров, быстро высвобождающихся из своих депо при повышении энергетического запроса со стороны организма.

Запасы гликогена находятся в печени (от 100 до 380 г) и в скелетных мышцах (не менее 750 г). Гликоген печени расходуется для нужд всего организма, а гликоген мышц может быть использован только собственными тканями. Печень – единственный орган, поставляющий глюкозу всем тканям, в том числе скелетным мышцам. Основное количество глюкозы (до 70%) потребляется тканями мозга.

Поскольку запасы гликогена в печени невелики и при интенсивной работе организма быстро расходуются, для их пополнения включается процесс, называемый глюконеогенезом, осуществляемый только в тканях печени и предназначенный для экстренной выработки ставшей дефицитной глюкозы из очень ценных продуктов – аминокислот.

Там же осуществляется физиологически целесообразный, но энергетически маловыгодный процесс переработкиLa , накапливающегося в мышечной ткани во время тяжелой физической работы, в глюкозу.

Система углеводного обмена играет исключительную роль в поддержании энергетического обмена в организме, по этой причине гепатоциты имеют очень гибкую и легко перестраивающуюся систему ферментов, обеспечивающих бесперебойную выработку углеводов из разнообразных субстратов.

В поддержании энергетического гомеостаза система углеводного обмена скоординированно функционирует с системой обмена жиров, регулируемой также печенью. Печень активно участвует во всех реакциях, связанных с метаболизмом жирных кислот, включая их синтез, окисление, преобразование в триглицерины и фос-фолипиды.

В гепатоцитах активно формируется основная масса липопро-теинов, участвующих в регулировании уровня холестерина в тканях организма. В печени же осуществляются основные этапы обмена холестерина и его переработка в желчные кислоты. При увеличении нагрузки на организм наблюдается активация жирового обмена, обеспечивающего более высокую энергетическую отдачу по сравнению с глюкозой.

Уникальной особенностью печени, отличающей ее от других органов, является наличие в ее клетках полного набора ферментов, осуществляющих обмен всех аминокислот. Эта особенность предопределяет активное участие гепатоцитов в синтезе широкого спектра белков. Синтетические функции печени направлены на удовлетворение потребностей всего организма. Нарушение работы печени по синтезу белков, возникающей при гипоксии тканей в случае значительных и длительных физических нагрузок, обширных кровопотерь, в условиях шокового состояния, способствует развитию в организме прогрессирующей мультиорганной недостаточности, часто не совместимой с жизнью.

Очень важна роль печени в регулировании метаболизма азота в организме. Только в тканях печени происходит синтез мочевины из аминокислот и аммиака для последующего ее выведения через почки.

Масштабность биосинтетических задач, решаемых в тканях печени, и значительная энергоемкость процессов биосинтеза предполагает наличие эффективной системы энергопродуцирования в гепатоцитах. Основной поток макроэргов поступает в гепатоциты в результате работы митохондриальной дыхательной цепи. При возможных нарушениях митохондриального окисления включаются процессы гликолитического расщепления субстрата. Однако их низкая энергетическая эффективность и закисление содержимого цитоплазмы определяют запуск гликолиза лишь в условиях крайней необходимости (Белоусова В. В. и др., 1995).

Следует обратить внимание на одну особенность функционирования митохондриальной дыхательной цепи в гепатоцитах по сравнению с другими тканями. В гепатоцитах более развита система микросомального окисления. Именно по этой причине поступление субстратов в дыхательную цепь гепатоцитов преимущественно осуществляется через комплекс II (сукцинатзависимые субстраты), а не через комплекс I.

Микросомальная система окисления субстрата предназначена для окислительной модификации жирорастворимых продуктов, поступающих в печень. Реакция осуществляется при участии ряда полиферментных комплексов, называемых монооксигеназами. Главную роль в них играет фермент цитохром Р-450, который при участии кислорода осуществляет гидроксилирование липорастворимых веществ, в том числе холестерина.

При этом образуются две группы продуктов, оказывающих негативные воздействия на ткани печени и весь организм в целом.

В первую группу веществ входят спирты, фенолы, альдегиды, эпоксиды и другие соединения, многие из которых ингибируют работу комплекса I дыхательной цепи. Особенно следует отметить возможность их взаимодействия с белками крови с образованием аллергенов или канцерогенов. Хотя гепатоциты в последующих реакциях модификации пытаются перевести все эти продукты в водорастворимую форму, удобную для вывода из организма, некоторая их часть успевает попасть в кровь.

Ко второй группе метаболитов, образуемых в микросомах печени при переработке липорастворимых веществ, относятся АФК. Среди них могут быть выделены высокоактивные радикалы, способные вступать в химическую реакцию с ближайшими соседями, и относительно малореакционные радикалы или другие кислородсодержащие продукты, способные покинуть пределы микросом или даже клетки до их модификации.

Изменение соотношения между прооксидантной системой, генерирующей свободные радикалы, антиоксидантной системой, связывающей данные радикалы, и количеством субстратов окисления ведет к изменению состава мембран и влияет на метаболизм клетки. Высказано предположение (Скулачев В.П., 1989), что все участники окислительных превращений составляют основу регуля-торной системы, организованной по принципу замкнутого круга с отрицательной обратной связью. Система позволяет поддерживать ПОЛ на определенном уровне.

Длительное отклонение системы от состояния равновесия приводит к развитию патологических состояний. Экзогенное введение в систему любых входящих в нее компонентов на время смещает равновесие, но не нарушает связей, существующих между звеньями данной системы.

О серьезных последствиях нарушения баланса между прооксидантной и антиоксидантной системами, в том числе на энергетику клеток, свидетельствуют эксперименты. При значительных нарушениях энергопродуцирующих функций наступает гибель клеток. Гепатоциты особенно чувствительны к повреждению их энергетики. Это подтверждается результатами клинических наблюдений, когда у больных, находящихся в шоковом состоянии, снижение энергопродуцирующих функций печени является одной из наиболее частых причин летальных исходов.

Для тканей печени характерны состояния циркуляторной (потери крови, анемии, нарушения микроциркуляции, лизис эритроцитов) и гемической (отравления дыхательными ядами, повреждение митохондрий) гипоксии. Это связано как с особенностями внутриклеточного метаболизма, так и с природой перерабатываемых гепатоцитами продуктов.

Увеличение в продуктах питания различных наполнителей, красителей, ароматизаторов, консервантов увеличивает нагрузку на печень. Особенно серьезна проблема повышенного содержания в овощных культурах нитратов, широко используемых в качестве удобрений для повышения продуктивности культур. Нитраты и продукты их модификации способствуют переходу гемоглобина в неактивный метгемоглобин, ингибируют работу дыхательной цепи, образуют канцерогенные нитрозосоединения, ответственные за возникновение рака желудка и толстой кишки.

Повышенный уровень реакций ПОЛ в тканях печени контролируется системой антиоксидантной защиты. В процессе биотрансформации кислорода происходит последовательное образование четырех типов радикалов и кислородсодержащих соединений. Для инактивации первых трех в клетках существуют три уровня защиты, реализуемых с преимущественным использованием ферментов антиоксидантной защиты. Инактивация высокореакционных радикалов четвертой группы, реализуется только с использованием низкомолекулярных антиоксидантов, функционирующих в липидах (убихинон, витамины А и Е, (3-каротин) или в водной фазе (глутатион, витамин С и др.). Для печени особенно важна роль глутатиона как антиоксиданта. Снижение его концентрации в тканях печени на 30% от нормы приводит к резкому увеличению токсичности ксенобиотиков, интенсифицирует повреждение мембран и нарушает гомеостаз ионов Са.

Повышение внутриклеточного уровня ионов Са является важнейшим механизмом повреждения гепатоцитов при различных патологиях. Этот процесс запускается путем активации процессов ПОЛ в эндоплазматическом ретикулуме гепатоцитов, где преобладают неферментативные реакции окисления субстрата. Дезорганизация внутриклеточной иерархии ионов Са, их выход из ретикулума и митохондрий, резко повышающий содержания ионов в цитоплазме, ведет к серьезным нарушениям внутриклеточного метаболизма.

В последние годы наблюдается стремительный рост числа публикаций, посвященных выяснению роли окиси азота (NO) в работе печени. Сейчас не вызывает сомнений, что NO играет значительную роль в регуляции функциональной активности гепатоцитов, влияя на синтез белков и углеводов, продукцию макроэргов в процессах митохондриального окисления и гликолиза, окисление в микросомах ксенобиотиков. Особенно возрастает влияние NO на состояние отдельных тканей или всего организма в целом при патологиях. Следует отметить, что наблюдаемые эффекты от активации NO-синтазы часто бывают полярными. В настоящее время преобладает мнение, что в условиях умеренной генерации окиси азота отмечается ее защитное действие на ткани. Однако при избыточной генерации NO проявляется цитотоксическое действие продукта. В этом случае ингибирование работы фермента оказывает защитный эффект на ткани.

Повышенная повреждаемость тканей печени связана с определенными особенностями ее метаболизма, в первую очередь с интенсивной работой микросомальной системы биотрансформации липорастворимых продуктов. Подобная система не только ответственна за синтез большого количества активных форм кислорода (АФК), соизмеримого с продукцией остальной части клетки, что увеличивает нагрузку на систему антиоксидантной защиты, но и за выработку токсичных для биологических тканей продуктов, в том числе ингибиторов дыхательной цепи. Таким образом, действие повреждающих факторов в равной мере направлено как на дезорганизацию работы гепатоцитов (АФК стремятся увеличить беспорядок в системе), так и на снижение потенциальных возможностей клеток по восстановлению поврежденных участков (повреждение энергопродуцирующих функций клеток уменьшают их репарационные возможности).

 

Рис. 4. Обмен веществ в клетках печени

 

При развитии патологических ситуаций клетки печени особенно нуждаются как в коррекции избыточной активности процессов свободно-радикального окисления, так и в поддержании энергетического гомеостаза гепатоцитов (рис. 4).

Снижение функциональных возможностей печени происходит в результате тренировочной нагрузки, выходящей за пределы физиологических возможностей организма.

Как следствие неадекватной нагрузки происходит угнетение функций печени, дренажной функции желчных протоков, накопительной и сократительной функции желчного пузыря. Далее по принципу цепной реакции страдают другие внутренние органы, а также снижается иммунитет, начинается потеря веса.

Выявление потери функциональных возможностей печени и контроль за ее деятельностью предполагает анализ биохимических факторов, УЗИ печени и желчного пузыря, реографию печени.

Фармакологическая помощь предполагает назначение гепато-протекторов, энергизаторов, антиоксидантов, антигипоксантов, желчегонных средств, препаратов, улучшающих микроциркуляцию в сосудах печени.

 

Гепатопротекторы

Для коррекции деятельности печени применяют в первую очередь гепатопротекторы. Основная функция гепатопротекторов – предохранение печеночных клеток от повреждающего воздействия увеличенного количества продуктов распада при интенсивных физических нагрузках спорта высших достижений (табл. 36).

 

Таблица 36








Дата добавления: 2015-01-02; просмотров: 852;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.017 сек.