Примеры решения заданий. Пример 1. Подобрать рукавный фильтр для очистки отходящих газов клинкерообжиговой печи, если объемный расход газа V1 равен 250 000 м3/ч

Пример 1. Подобрать рукавный фильтр для очистки отходящих газов клинкерообжиговой печи, если объемный расход газа V1 равен
250 000 м3/ч, температура газа 250ºС, плотность пыли 2600 кг/м3, концентрация пыли в газе, поступающем на очистку z1 = 30 г/м3, медианный диаметр пыли 12 мкм, требуемая запыленность очищенного газа равна 30 мг/м3.

Решение. Исходя из технологических условий (высокой температуры отходящих газов), в качестве фильтрованного материала выбираем усовершенствованную высокотемпературную стеклоткань. Наиболее целесообразным способом регенерации для таких тканей является обратная продувка воздухом низкого давления.

1. Удельная нагрузка q, м3/(м2 мин), определяется по формуле

 

.

 

По табл. 11 принимаем q0 = 2 м3/(м2 мин). Для фильтра с обратной продувкой С1 = 0,6. По графику (рис. 28) С2 = 0,93, в соответствии с дисперсным составом и температурой газа выбираем значения С3 = 1 и
С4 = 0,7. С учетом требований к очищенному газу С5 = 1. Тогда

 

м3/(м2∙мин).

 

2. Гидравлическое сопротивление фильтрованной перегородки рассчитывается по формулам (55) и (56). Предварительно принимаем ориентировочно длительность цикла фильтрования t = 900 с:

Пользуясь рекомендациями, изложенными выше, принимаем:

A = 1700∙106 м–1; B = 16,9∙109 м/кг; μ = 28∙10–6 Па∙с; wф=1,3∙10–2 м/с .

Тогда

Так как гидравлическое сопротивление при выбранной длительности цикла фильтрования слишком велико, уменьшаем продолжительность цикла фильтрования до 600 с, тогда

 

Δр2 = 620 + 1370 = 1990 Па.

 

3. Определяем количество регенераций в течение часа:

где tр – время отключения секции на регенерацию, равное 40 с.

4. Объем газа, расходуемый на обратную продувку, определяем из условия, что скорость газа при обратной продувке такая же, как и при фильтрации, м3/ч:

 

5. Площадь фильтрации Fф, м2, определим по формуле

Исходя из требуемой площади фильтрации, а также параметров очищаемого газа, выбираем по таблице прил. 4 рукавный фильтр ФРДО-6500: фильтрующая поверхность 6500 м2, число секций 10; число рукавов 2120; диаметр рукава 130 мм, высота 7,85 м; допустимое давление в аппарате
3 кПа; давление 0,4–0,6 МПа, расход сжатого воздуха на один ход пневмоцилиндра 0,55 л; габаритные размеры 22,3 7,6 15,9 м; масса 129 т.

6. Площадь фильтрации Fр, выключаемая на время регенерации, м2

7.

 
 

Уточненное количество газа Vp, м3/ч, расходуемого на обратную продувку в течение часа, определим из выражения:

8. Необходимая площадь фильтрации Fф, м2, при использовании рукавного фильтра ФРДО–6500 составит:

.

9. Сравним время цикла фильтрации с временем, затрачиваемым на регенерацию секций. При отключении на регенерацию по одной секции поочередно необходимо выполнение условия:

ttр(Nс – 1);

600 ≥ (10 – 1);

600 ≥ 360.

Условие выполняется, следовательно, постоянно будет происходить регенерация одной секции.

 

 

Пример 2. Рассчитать зернистый фильтр-циклон за узлом выгрузки клинкера нa транспортерную ленту при объеме аспирируемого воздуха
V = 90 000 м3/ч и концентрации пыли в нем z = 8 г/м3.

Необходимо обеспечить величину концентрации пыли на выбросе в атмосферу с не более 100 мг/м3.

Решение. 1. Определяем требуемую величину эффективности пылеулавливания. Так как объем газа на входе и на выходе аппарата в соответствии с условиями задачи не изменяется, воспользуемся формулой (29), заменив массы пыли на соответствующие концентрации

%.

2. По графику (рис.34) для вычисленной степени очистки находим требуемую величину скорости фильтрации w = 18,9 м/мин.

3. Вычисляем предварительно требуемую величину площади фильтрования, м2

4. Принимаем по табл. 13 для приведенных условий три параллельно установленных зернистых фильтра-циклона ФГЦН-30, площадь фильтрации одного фильтра F1 = 28,8 м2.

5. Общая площадь фильтрации установленных фильтров

Fф = 28,8·3 = 86,4 м2

6. Уточняем величину фактической скорости фильтрования wф, м/мин

7. Для фактической скорости фильтрации находим по графику фактическую величину степени очистки газа ηф = 99,2%.

Фактическое значение степени очистки выше требуемого по расчету, т. е. выбранные аппараты обеспечивают необходимую степень очистки газа от пыли при выбранной величине удельной газовой нагрузки.

Тесты

1. В волокнистых фильтрах диффузионный механизм улавливания является преобладающим для частиц с размерами:

1) менее 0,3 мкм; 2) 0,3–3 мкм; 3) 1–5 мкм; 4) 5–10 мкм; 5) более 10.

2. Фильтры Петрянова работают при скоростях фильтрования:

1) 1–2 м/с; 2) 0,1–0,5 м/с; 3) 1–10 см/с; 4) 1–2 м/мин.

3. Для очистки газа, имеющего температуру 220ºС используют рукавные фильтры с рукавами из:

1) лавсана; 2) нитрона; 3) стеклоткани; 4) хлорина; 5) хлопка.

4. Для очистки газа с температурой 150ºС от щелочной пыли можно использовать фильтровальную ткань:

1) номекс; 2) полипропилен; 3) лавсан; 4) стеклоткань; 5) нитрон.

5. Рукавные фильтры типа ФРКИ работают при скоростях фильтрации:

1) 1–2 м/с; 2) 0,2–0,5 м/с; 3) 0,01–0, 1 м/мин; 4) 0,1–0,5 м/мин;
5) 1–3 м/мин

6. В рукавных фильтрах с импульсной регенерацией не рекомендуется использовать для изготовления рукавов:

1) стеклоткань; 2) полипропилен; 3) нитрон; 4) оксалон; 5) номекс;
6) лавсан

7. Фильтры со струйной продувкой используют при:

1) высокой концентрации пыли и малых расходах газа; 2) высокой концентрации пыли и больших расходах газа; 3) низкой концентрации пыли и малых расходах газа; 4) низкой концентрации пыли и высоких расходах газа.

8. В зернистых фильтрах с неподвижной загрузкой удельная газовая нагрузка составляет:

1) 0,5–2,5 м3/(м2×мин); 2) 0,5–1 м3/(м2×с); 3) 20–40 м3/(м2×мин); 4) 2,5–20 м3/(м2×мин).

9. Основным параметром для подбора зернистых фильтров является:

1) концентрация пыли в газе; 2) объемный расход газа; 3) дисперсный состав пыли; 4) требуемая степень очистки.

10. Для регенерации загрузки в зернистых фильтрах не используется:

1) импульсная продувка; 2) обратная продувка; 3) ворошение;
4) встряхивание.

 

Вопросы для повторения

 

1. Каковы основные механизмы улавливания частиц при фильтровании?

2. В чем состоит механизм инерционного захвата частиц?

3. Что такое термофорез?

4. Для каких целей используются волокнистые фильтры?

5. Что представляют собой фильтры Петрянова?

6. Для чего применяются воздушные фильтры?

7. Как устроен и работает масляный фильтр?

8. Чем объясняется высокая степень очистки рукавных фильтров в запыленном состоянии?

9. Каковы оптимальные значения удельной газовой нагрузки в рукавных фильтрах?

10. От чего зависит гидравлическое сопротивление рукавного фильтра?

11. Какие методы регенерации используются в рукавных фильтрах?

12. От чего зависит продолжительность цикла фильтрования?

13. Какими факторами определяется выбор фильтровальных тканей при проектировании фильтров?

14. Как подбираются рукавные фильтры?

15. Каковы основные достоинства и недостатки рукавных фильтров?

16. Как классифицируются зернистые фильтры?

17. Как устроены фильтры с неподвижным зернистым слоем?

18. Какие материалы могут использоваться в зернистых фильтрах?

19. При каких скоростях фильтрации работают фильтры с неподвижными слоями загрузки?

20. Как работают зернистые фильтры с движущейся загрузкой?

21. Какие способы регенерации используются в зернистых фильтрах?

22. Как работает фильтр-циклон?

23. Каковы основные достоинства и недостатки зернистых фильтров?








Дата добавления: 2014-12-30; просмотров: 1518;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.018 сек.