Строение и функции основных органелл клетки

Ядро — основная часть клетки. В ядре различают ядрышко, кариоплазму и хроматин.

Ядро расположено в центре клетки, окружено ядерной мембраной и содержит ДНК. Под электронным микроскопом ядро беспорядочно зернисто, а в одной его части зернистость резко возра-


стает, образуя ядрышко (иногда их несколько) — скопление рибо-сомальных белков и частей рибосом (рРНК), в основе которого лежит участок хромосомы, определяющий ее структуру и несущий ген. В растительных и животных клетках ДНК присутствует в виде структур размером около 1 мкм — хромосом (от греч. chroma — цвет, краска), число которых постоянно для каждого вида. Хромосомы — это самостоятельные ядерные структуры, состоящие из двух продольных нитевидных половинок — сестринских хроматид (по внешнему виду их разделяют на равноплечие, неравноплечие и палочковидные). Клеточное ядро окрашено ядерными красителями почти равномерно, в микроскоп видна только его зернистость. Основные красители связываются нуклеиновыми кислотами. Кариоплазма — жидкая фаза ядра, в которой находятся растворенные продукты жизнедеятельности.

Ядру, содержащему хромосомы (с ДНК), принадлежит ведущая роль в явлениях наследственности (см. гл. 11).

Цитоплазма — это живая часть клетки, помимо ее ядра. Снаружи она окружена клеточной мембраной, а внутри — ядерной. Пространство между ядром и внутренней поверхностью плазматической мембраны заполнено нитями клеточного матрикса, который определяет форму клетки и принимает участие в функциях, связанных с движением (деление клетки и ее перемещения, внутриклеточный транспорт везикул и органелл). Кроме того, матрикс обеспечивает структурную основу метаболизма, определяя пространственное размещение молекулярных компонентов клетки, занятых в процессе жизнедеятельности. В ее состав входят рабочие части клетки: рибосомы, эндоплазматическая сеть (ЭПС), пластиды, лизосомы и пр. Среди клеточных органелл особую роль играют хлоропласты клеток зеленых растений и митохондрии любых организмов. В хлоропластах происходит связывание энергии солнечного света в процессе фотосинтеза. В митохондриях же извлекается энергия, заключенная в химических связях поступающих в клетку питательных веществ.

Митохондрии (отгреч. mitos — нить + chondrion — зернышко, крупинка) — энергостанции клеток — наблюдали в световой микроскоп как самые крупные клеточные органеллы. Они входят в состав любой клетки, по строению похожи на клетки прокариот, имеют округлую форму, а при соединении нескольких рядом могут выглядеть как нити длиной менее 1 мкм. Внутри митохондрий находятся окислительные ферменты, РНК, ДНК и ризосо-мы, отличающиеся от цитоплазматических. В их мембраны встроены ферменты, участвующие в процессах преобразования энергии пищевых веществ в энергию АТФ, необходимую для жизнедеятельности (см. гл. 11). В клетках растений имеются пластиды (хлоропласты, хромопласты и лейкопласты), которые тоже имеют двухмембранное строение, как и митохондрии.


       
 
   
 



Хлоропласты (от греч. chloros — зеленый + plastos — вылепленный, образованный) — особые органеллы в растительных клетках. Пигмент, окрашивающий их в зеленый цвет и поглощающий энергию солнечного света, назван хлорофиллом (от греч. ...phyllon — лист). При его участии хлоропласты синтезируют из воды и двуокиси углерода глюкозу — основное органическое вещество, которым питается все живое. Без процесса фотосинтеза вряд ли была бы возможна жизнь. С помощью электронного микроскопа установлено, что хлоропласт окружен двойной мембранной оболочкой, как и митохондрии. В ней заключено основное вещество — строма (от греч. stroma — подстилка), заполненная множеством пластинчатых структур — ламелл, которые расположены парами, на концах слипаются и окружают каждую цистерну, в хлоропластах сильно утолщены. В строме видны и крупные белые гранулы — крахмальные зерна; значит, здесь продукт фотосинтеза — глюкоза — сразу же переводится в нерастворимый крахмал. Выяснение связи структуры хлороплас-тов с их функциями важно для осуществления реакции фотосинтеза «в


пробирке» и возможности управлять этим процессом, что явится одним из шагов на пути избавления человечества от забот о пропитании.

На рис. 12.3, а показан спектр солнечного излучения, на котором выделены участки поглощения молекул воды и углекислого газа; на рис. 12.3, б, в — структурная формула молекул хлорофилла и спектральные области его активного поглощения.



Реснички и жгутики относят к органоидам движения. Они представляют собой выросты мембран размером около 0,25 мкм, внутри которых находятся тоненькие трубочки. Такие органоиды есть у многих


клеток — простейших, одноклеточных водорослей, сперматозоидов, в клетках дыхательного эпителия.

Эндоплазматическая сеть (ЭПС) — это сеть каналов в цитоплазме всех клеток, составляющая до 30— 50 % объема клетки. По ЭПС синтезированные вещества транспортируются в аппарат Гольджи; сеть делит клетку на отсеки и даже участвует в синтезе белков. Гранулярная ЭПС состоит из мембранных мешочков, покрытых рибосомами, на них синтезируются белки, которые потом поступают внутрь каналов, где приобретают третичную структуру. На мембранах гладкой сети синтезируются липиды и углеводы, поступающие затем тоже внутрь каналов.

Аппарат Гольджи (АГ) — система полостей, каналов, пузырьков, образованная гладкими мембранами. Эта органелла, обнаруженная во всех эукариотических клетках, состоит из множества хорошо уложенных мешочков, которые содержат олигоса-хариды — длинные цепи из простых Сахаров. Стопки АГ обладают прецизионной внутренней структурой из трех отделов, специализирующихся на разных типах модификации белков. Белок, проходя через них, химически модифицируется в соответствии со своим предназначением, белки сортируются и отправляются по нужному адресу.

АГ наиболее ярко выражен в железистых тканях, поэтому посчитали, что он связан с железами внутренней секреции. В пузырьках накапливаются вещества, которые синтезируются и транспортируются по сети. В АГ эти вещества подвергаются химическим превращениям, потом упаковываются в мембранные пузырьки и выбрасываются из клеток в виде секретов. В структуре АГ образуются лизосомы. В железистых клетках неподалеку от диктосом, на которые может распадаться структура АГ, особенно много митохондрий. Если блокировать клеточное дыхание, пузырьки Гольджи не отделяются от диктосом, и прекращается образование клейкой слизи, выделяемой раньше и состоящей из углеводов. Низкомолекулярный сахар полимеризуется в макромолекулы и выделяется. Дик-тосомы участвуют в сборке полисахаридов. Так, в них у мяты образуются эфирные масла, т.е. синтез материала клеточной оболочки — одна из основных функций диктосом.

Изучение диктосом позволило проследить за процессом выделения клетки. При соприкосновении со своей элементарной мембраной пузырька Гольджи диктасомы как бы сливаются друг с другом, и в месте соприкосновения образуется «ямка». Пузырек, похожий на шарообразный кувшин, повисает на плазмолеме, а содержимое «кувшина» как бы выдавливается из него. Так выводится содержимое бывшего пузырька Гольджи из клетки. Чтобы избежать хаоса биохимических процессов, каждый из множества новообразованных белков должен быть определенным образом модифицирован, отсортирован и с большой точностью доставлен в соответствующий отдел. Перемещения макромолекул в клетке связаны с АГ.

Вакуоли — пространства, заполненные клеточным соком. В них часто растворены вещества, образующиеся в клетках как


своего рода отходы обмена веществ, так как растения не имеют специальной выделительной системы, как животные и человек. Получить их фотографии трудно, потому что на границе между густой цитоплазмой и жидким содержимым вакуоли при фиксации возникает разрыв.

Выше перечислялись и как-то связывались с составом и строением компонентов клетки их основные функциональные особенности. Конечно, частично они перекрываются, но синтез белка, траспортирование, дыхание, фотосинтез, наследственность не исчерпывают всех процессов жизнедеятельности клетки. Во всех клетках можно выделить большое число разных пузырьков, гранул, пластинок, нитевидных структур и т.п., которые все время меняются и по внешнему виду, и по составу — лизосомы, фраг-мосомы и т.д. Поскольку перечисленные выше функции относятся, скорее, к процессам синтеза, то разумно предположить, что для равновесия клетки должны быть подвержены и процессу распада. Реакции разложения катализируются многими ферментами, их деятельность строго контролируется, чтобы они не мешали синтезу.

12.3. Функции клеточных мембран. Работа «ионного насоса»

Клеткам присуще мембранное строение — это одно из положений клеточной теории. Среди мембранных органоидов — наружная цитоплазматическая мембрана (НЦМ), эндоплазматиче-ская сеть (ЭПС), аппарат Гольджи (АГ), лизосомы (Л), митохондрии (М), пластиды (П). В основе всех этих органелл лежит биологическая мембрана, все они имеют единый план строения. Мембранные структуры — арена важнейших жизненных процессов.

Биологическая мембрана (клеточная или плазматическая) — пленка, покрывающая клетку, и настолько тонкая, что ее удалось обнаружить лишь с помощью трансмиссионного электронного микроскопа. Все мембраны построены по одному плану, всегда слоистые. Поперечный разрез показывает, что по обе стороны внутренней, более светлой линии расположены более темные. Мембраны были открыты более века назад, но их роль в механизмах жизнедеятельности клеток до недавнего времени сводили в основном к барьерной функции. Опыты показали, что малые молекулы быстрее усваиваются живой клеткой, чем большие, и вещества, растворимые в воде и нерастворимые в жирах, проникают в клетку медленнее, чем растворимые в жирах. Значит, мембраны содержат жироподобные вещества — липиды и белки, способные связывать воду.

Липиды в мембранах содержат фосфорную кислоту, потому их называют фостатидами. Пример — лецитин. Капля такого ли-


пида мгновенно растекается по водной поверхности, и пленка образует мономолекулярный слой. Они обладают водоотталкивающими, или гидрофобными (от греч. phobos — страх, боязнь), свойствами. Фосфорная кислота растворима в воде, или гидрофильна (от греч. philia — любовь). Она как бы притягивает воду, а водоотталкивающие остатки жирных кислот, расположенные на другом конце молекулы, как бы избегают ее. Так как гидрофобные концы липидных молекул не могут сближаться ни с клеточной оболочкой, ни с протопластом, они обращены друг к другу «головами». Так образуется бимолекулярный слой, у которого наружу выставлены гидрофильные части. Дополнительные гидрофильные белки в мембране повышают устойчивость описанного выше липидного бимолекулярного слоя.

Структуру мембран — внутри «масло» (двойная липидная пленка), снаружи «хлеб» (белковая оболочка) — называют сэндвич-структурой. Такую структуру химики могут получать искусственно.

Мембрана — двухмерно ориентированный раствор разных белковых молекул и белковых кластеров из нескольких сотен молекул в вязком слое. Белковые молекулы в большинстве своем свернуты в клубки (глобулы) и асимметричны. Их выступающие из мембраны части обладают электрическими зарядами, причем на внешней поверхности суммарный заряд оказывается отрицательным. Молекула фосфолипидов сильно асимметрична. Одна ее часть несет электрические заряды, образуя «полярную» головку, другая — электронейтральный углеводородный «хвост». В водной среде полярные головки выступают из воды, а углеводородные хвосты, из-за гидрофильных и гидрофобных взаимодействий погружаются. Так как все белки участвуют в диффузном движении, их распределение по мембране в каждый момент случайно. Коэффициент диффузии белковых молекул по мембране порядка 5 • 10-14 м2/с, а для гемоглобина в водном растворе — на три порядка больше. Значит, вязкость мембранной фазы на три порядка больше, чем у воды. Некоторые белки способны только к поступательному перемещению, другие могут вращаться в плоскости мембраны, есть и такие, которые перемещаются с одной стороны мембраны на другую. Последние участвуют в транспортировании веществ через мембрану.

Ионный перенос — проявление мембранной возбудимости. Через мембрану осуществляется обмен с внешней средой — питание и выделение отходов. Несмотря на хаотические движения, молекулы стремятся переместиться в сторону меньшего давления (перемещение по градиенту давления, или концентрации, называют диффузией). Мембрана обеспечивает стабильность химического содержимого клетки и, обладая избирательной способностью, регулирует обмен с окружающей средой. Вещества, растворимые в липидах, проходят через мембрану, не растворяясь в ней. Пере-


мещение ионов и органических мономеров типа аминокислот и глюкозы происходит много быстрее, чем этого можно было бы ожидать от полярных молекул. Имеет место и перемещение против градиента концентрации — так называемый активный транспорт, требующий затрат энергии. Наиболее изу чен такой активный транспорт: процесс откачки ионов натрия из клетки и накачки в нее ионов калия, в котором «Na—К — насос» использует энергию АТФ (рис. 12.4). Этим путем откачиваются ионы натрия из клетки и накачиваются ионы калия против градиента концентрации.

Специальные белковые молекулы в мембране переносят различные вещества. Так, с их помощью клетки печени, эритроциты и мышечные клетки быстро поглощают глюкозу. В настоящее время выяснены пять молекулярных форм переносчика глюкозы, причем каждая из них приспособлена к нуждам той ткани, в которой она содержится. Посредством такой облегченной диффузии вещества могут выводиться из клеток. Через мембрану осуществляется и пассивный транспорт. Таков осмос — прохождение воды через полупроницаемую мембрану. Могут через нее путем диффузии проникать вещества, растворимые в липидах (жирные кислоты и эфи-ры), и некоторые ионы.

Клеточная мембрана, помимо барьерной функции, обеспечивает обмен между цитоплазмой и внешней средой, из которой в клетку поступают вода, ионы, различные молекулы, а выводятся продукты обмена веществ и синтезированные в клетке вещества. Транспортные функции не ограничиваются маленькими молекулами. Благодаря фагоцитозу, открытому и описанному И. И. Мечниковым (1882), в клетку могут проникать и крупные молекулы биополимеров. Твердая частица, оказавшаяся вблизи клетки, окружается выростами мембраны и затягивается внутрь. Процесс фагоцитоза свойствен простейшим, лейкоцитам, клеткам капилляров костного мозга, печени, надпочечников, селезенки. Существует и еще один вид активного транспорта — пиноцитоз. Таким путем происходит поглощение клеткой жидкости в виде мелких капель с растворенными в них высокомолекулярными веществами. Капли захватываются выростами мембраны, погружаются в цитоплазму и усваиваются. Это явление свойственно животным клеткам.

Регулируя обмен между клеткой и окружением, мембраны обладают рецепторами, воспринимающими внешние сигналы (свет, движение бактерий к источнику пищи, ответы на гормоны). Безусловно, важно, что на них происходит превращение энер-


гии. Так, на внутренних мембранах хлоропластов происходит фотосинтез, а на внутренних мембранах митохондрий — окислительное фосфорилирование. Компоненты мембран движутся и перестраиваются, поскольку созданы из белков и липидов, что определяет одно из важнейших свойств живого — раздражимость.

Роль мембран стала вырисовываться иначе после того, как английские ученые химик Д. Кроуфут-Ходжкин и физиолог А. Хаксли сформулировали теорию проведения нервного импульса (1952), а Е.Сюзерленд открыл (1972) существование на возбудимой мембране переносчика информации внутрь клетки (молекулы цАМФ — циклического аденозинмонофосфата). Этот вопрос еще недостаточно изучен и является предметом особого интереса, так как через познание механизма функционирования возбудимых мембран лежит путь к диагностике и лечению многих болезней.

Возбудимость — реакция клетки на воздействие, происходящая с многократным усилением по энергии. Возбудимость — общее свойство клеток, не только сердечных, мышечных или нервных. Состояние мембраны отражает состояние клетки в целом. Возбудимыми называют мембраны, окружающие клетку и способные менять свою проницаемость для ионов при различных химических и физических воздействиях. Функционирование таких мембран обеспечивает не только внутриклеточную регуляцию, но и управление и синхронизацию работы соседних клеток и даже органов с помощью химических и электрических каналов связи, которые составляют основу гормональной и нервной регуляции. Основные компоненты этих систем находятся в мембранах.








Дата добавления: 2014-12-27; просмотров: 1963;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.