Газоразрядные индикаторы.

К сожалению малогабаритные лампочки накаливания не отличаются надёжностью, так как при включении питания через них протекает значительный ток, в результате воздействия которого на нить накаливания лампа может выйти из строя. Кроме того они боятся ударов. Все эти причины, а также большой потребляемый ток привели к тому, что в настоящее время эти индикаторы практически не используются.

Эти индикаторы в отличие от ламп накаливания управляются не напряжением, а током. Поэтому в схему приходится вводить токоограничивающий резистор. Напоминаю, что подобные индикаторы применяются для подсвечивания либо надписей, либо символических рисунков (пиктрограмм). Схема включения газоразрядного индикатора приведена на рисунке 2.1.


Рисунок 2.1. Схема подключения индикаторной газоразрядной лампы к цифровой ТТЛ микросхеме

В этой схеме транзистор требуется в основном для согласования по напряжению, так как газоразрядные индикаторы питаются от источника напряжением 180 ... 300 В (напряжение зажигания газоразрядной лампы). Поэтому транзистор должен выдерживать напряжение 300 В. Что касается сопротивления R3, то оно рассчитывается по закону Ома. Необходимо от напряжения питания отнять падение напряжения на зажженной индикаторной лампе, которое можно взять из справочника по индикаторным лампам (обычно 80 В) и поделить на ток этой лампы. Падением напряжения на открытом транзисторе VT1 можно пренебречь. Например:

R3 = (Uп — UHL1)/Iл = (200 В — 80 В)/1 мА = 120 кОм.

Газоразрядные индикаторы используются как для индикации битовой информации, так и для отображения десятичной информации. При построении десятичных индикаторов катод газоразрядных индикаторов выполняется в виде десятичных цифр, как это показано на рисунке 2.2.


Рисунок 2.2. Внешний вид газоразрядного индикатора ИН-1

Пример индикаторной панели, выполненной на газоразрядных индикаторах, приведен на рисунке 2.3.


Рисунок 2.3. Внешний вид индикаторной панели на газоразрядных лампах

Для уменьшения габаритов цифрового устройства и упрощения его принципиальной схемы были разработаны специальные микросхемы дешифраторов, выдерживающие напряжение до нескольких сотен вольт, например отечественная микросхема К155ИД1. Принципиальная схема подключения десятичного газоразрядного индикатора к микросхеме К155ИД1 приведена на рисунке 2.3.


Рисунок 2.4. Схема подключения индикаторной газоразрядной лампы к десятичному дешифратору

На вход этой схемы подается двоично-десятичный код. Он преобразуется микросхемой D1 в инверсный линейный десятичный код. Инверсия нужна для того, чтобы ток протекал только через тот вывод, двоично-десятичный код которого подан на вход схемы. В результате светится только тот катод, который подключен к этому выводу, а так как катод выполнен в форме десятичной цифры, то именно эта цифра и отображается на газоразрядном индикаторе.

Резистор R1 требуется для ограничения тока газоразрядного индикатора до допустимой величины. Одним резистором в схеме можно обойтись потому, что ток может протекать только через один из десяти катодов. Расчет ограничивающего ток резистора не отличается от расчета резистора R3 в схеме подключения одиночного газоразрядного индикатора, приведенной на рисунке 2.1.

В настоящее время газоразрядные индикаторы с холодным катодом практически не используются. Обычно применяются более эффективные семисегментные газоразрядные индикаторы с подогревным катодом. Применение катода с подогревом позволяет снизить анодное напряжение подобного газоразрядного индикатора до 20 ... 27 В, а семисегментный анод позволяет увеличить угол обзора индикатора.

Внешний вид одного из газоразрядных индикаторов с подогревным катодом приведен на рисунке 2.5.


Рисунок 2.5. Внешний вид газоразрядного индикатора с подогревным катодом

В описанных индикаторах газ светится не около катода, а в промежутке между управляющей сеткой и анодом. На рисунке 2.5 аноды четко видны в виде белых сегментов. Управляющая сетка видна как фиолетовая поверхность, а катод выполнен в виде двух тонких проводников, которые почти незаметны на переднем плане индикатора. Если индикатор поместить за зеленым светофильтром, то ни нить накала, ни управляющая сетка видны не будут.

Если на нить накаливания подать постоянное напряжение, то на ней возникнет падение напряжения. Это напряжение будет суммироваться с анодным напряжением, в результате яркость свечения сегментов в индикаторе будет неравномерной. Конструктивно нить проложена так, чтобы этот эффект свести к минимуму, однако на нить накала подогревного катода желательно подавать переменное напряжение. Так как ток в этом случае будет протекать в различном направлении, то средняя яркость свечения сегментов будет равномерной.

Схема подключения газоразрядного индикатора с подогревным катодом к семисегментному дешифратору приведена на рисунке 2.6.


Рисунок 2.6. Схема подключения семисегментного газоразрядного индикатора к дешифратору

На этой схеме в качестве ключей использована микросхема высоковольтных инверторов с открытым коллектором, выдерживающих напряжение на коллекторе до 30 В. Обратите внимание, что общий провод подводится к нити накала через среднюю точку трансформатора накала. Это обеспечивает равномерность свечения индикатора по всей поверхности.

В практических схемах чаще используется схема подключения газоразрядного индикатора с отрицательным напряжением питания. В этом случае дешифратор должен обеспечить вытекающий ток ключей. Подобная схема включения газоразрядного индикатора приведена на рисунке 2.7.


Рисунок 2.6. Схема подключения семисегментного газоразрядного индикатора к дешифратору с вытекающим током

В этой схеме транзистор VT1 и резистор R1 образуют генератор тока с большим входным и выходным сопротивлением. В результате яркость свечения индикатора будет слабо зависеть от напряжения питания 27 В. Зависимость тока, протекающего через сегмент индикатора, в схеме, приведенной на рисунке 7, намного меньше по сравнению со схемой, изображенной на рисунке 6.

Так как задача подключения газоразрядных индикаторов является распространенной, то промышленностью были разработаны и выпускаются до настоящего времени специализированные микросхемы К176ИД3, где показанные на рисунке 3.7 генераторы тока входят в состав микросхемы. В результате данного схемотехнического решения выход дешифратора можно подключать к газоразрядному индикатору непосредственно.

В приведенных схемах подключения семисегментного газоразрядного индикатора управляющая сетка подключена непосредственно к питанию. Однако при создании схемы динамической индикации, которая будет рассмотрена несколько позднее, эта сетка используется для зажигания и гашения отдельных разрядов многоразрядного газоразрядного индикатора.








Дата добавления: 2014-12-24; просмотров: 6049;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.