Структура электромагнитного поля в волноводе

Структуру ЭМП волны любого типа в волноводе удобнее всего представлять путем построения силовых линий. На рис.1.3 показана структура ЭМП волны в прямоугольном волноводе. Волна — это поперечно-электрическая волна. Электрическое поле имеем в поперечном сечении, а магнитное поле, как в поперечном, так и в продольном.

Вдоль стороны " " волновода электрическое поле изменяется по синусоидальному закону, имеет место одна вариация (индекс m=1) поля. Вдоль OX на отрезке 0-a электрические силовые линии везде нормальны к плоскости широкой стенки волновода. Густота линий отражает величину напряженности электрического поля.

Вдоль узкой стенки волновода распределение амплитуды электрического поля равномерное, при изменении координаты Y поле не изменяется, нет вариаций поля (n=0).

Порядок построения электромагнитного поля волны следующий:

* Нанести электрические силовые линии.

* Построить линии тока смещения, сдвинув структуру электрических силовых линий вдоль оси волновода на .

* Построить магнитные силовые линии, замкнув их по правилу буравчика вокруг токов смещения.

* По примыкающим к поверхности магнитным силовым линиям, пользуясь граничным условием, построить структуру поверхностных токов проводимости .

Помнить: электрические и магнитные силовые линии перпендикулярны друг другу.

Подключим ко входу двухпроводной длинной линии генератор синусоидальных колебаний. Вдоль линии будет распространяться бегущая волна, зависимость напряженности поля ЕU которой от координаты Z представлена на рис.1.3.

Перейдем от длинной линии к волноводу, навесив на одну и вторую стороны линии четвертьволновые короткозамкнутые отрезки. В отрезках будет возбуждаться стоячая волна с максимумом напряженности в центре волновода. Зависимость ЕU от координаты C представлена на рис.1.3.

Структура токов смещения (они протекают в диэлектрике (в воздухе) между двумя широкими стенками волновода) повторяет структуру электрических силовых линий, но вдоль оси z они сдвинуты на , так как ток смещения прямо пропорционален скорости изменения напряженности электрического поля. Зависимость dсм от координаты Z показана на рис.1.3. Магнитные силовые линии охватывают токи смещения и располагаются в плоскости XOZ (рис.1.5). Графическим способом, используя формулу , находим направление поверхностных токов проводимости на всех стенках волновода (рис.1.5).

Рис. 1.5 Структура поля и токов на стенках прямоугольного волновода для основной волны .

Электрическое поле основной волны в любой точке поперечного сечения поляризовано линейно, а плоскость поляризации параллельна плоскости YOZ. Иногда ее называют электрической плоскостью.

Магнитное поле основной волны лежит в плоскости || XOZ. Иногда ее называют магнитной плоскостью.

В отличие от поляризации электрического поля магнитное поле в разных точках поперечного сечения поляризовано по-разному. Поясним это с помощью рис.1.6.

Рис. 1.6 К пояснению поляризационных свойств магнитного поля волны .

Точки A, B и C являются точками наблюдения, по направлению к которым движется волна (постепенно передвигаем к точкам A, B и C силовые линии вектора H). В точке В ( ) магнитное поле будет поляризовано линейно. В точке A поляризация будет левой эллиптической. В точке С поляризация будет правой эллиптической.

Поэтому можно сформулировать такое правило. Справа от осевой линии прямоугольного волновода магнитное поле основной волны имеет правую эллиптическую поляризацию, а слева от осевой линии левую эллиптическую. Это различие в поляризации используется при создании невзаимных устройств с ферритами.








Дата добавления: 2014-12-24; просмотров: 4615;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.