Приложение 2 Работа мозга и алкоголь

Разум, интеллект, быстрота реакций — все эти умозрительные характеристики и понятия базируются в первую очередь на материальной основе — огромном количестве разнородных клеток, тесно связанных между собой структурно и функционально. Их поддерживают и питают глиальные клетки (клетки головного мозга, которые участвуют в обменных процессах нервной ткани, выполняют опорную функцию), которых также насчитывается великое множество. Анатомически контакты между нервными клетками мозга и удалёнными от него периферическими объектами осуществляются посредством отростков двоякого типа. Ввод информации в клетку осуществляется с помощью коротких ветвистых отростковдендритов. В теле нейрона происходит непрерывная квалифицированная работа по интеграции и комбинации различных поступающих сигналов. Следствие такой деятельности — выработка своего собственного сигнала, генерированного с учётом поступившей информации и представляющего усреднённый результат проанализированных сведений.

Схема биологического нейрона

Выход сигнала реализуется через длинный отросток — аксон, а затем поступает к другим нервным клеткам. Сигналы, которыми обмениваются клетки, бывают двух типов: электрические и химические. Весь нейрон, образованный телом, ветвящимися дендритами и длинным аксоном, поляризован таким образом, что внутри он заряжен отрицательно на 70 миливольт по отношению к наружной поверхности. Это «потенциал покоя», образованный за счёт различного соотношения ионов калия и натрия. В мембране нейрона имеются условия для создания градиента — разницы в содержании калия и натрия внутри и вне клетки. Поддержание характерного градиента возможно только при сохранении целостности мембраны нейрона: из клетки выводится натрий и пропускается внутрь калий. Изменение разности потенциалов, создаваемой таким образом между наружной и внутренней сторонами клетки в состоянии покоя — это электрические сигналы нервов.

Между структурой, доставляющей информацию (аксон и его окончание) и воспринимающей её (дендрит, тело клетки), имеется специальный контакт — синапс. Синаптическая щель служит своего рода разъёмом, прерывающим проведение нервного импульса-сигнала. Роль передатчика выполняет химический посредник-медиатор(соединение, опосредующие течение нейропсихических процессов в центральной и периферической нервной системе), выделившийся в ответ на поступление импульса на пресинаптической мембране окончания аксона, он диффундирует (всасывается и распространяется) через щель к противоположной её стороне, к постсинаптической мембране другого нейрона[96]. Медиатор оказывает на неё одно из двух воздействий — возбуждающее, связанное с понижением мембранного потенциала и выработкой импульсов с бóльшей частотой, или тормозящее, при котором постсинаптический мембранный потенциал стабилизируется. Такую клетку трудно вывести из «равновесия», генерация импульсов в ней происходит с меньшей частотой или вообще затухает. Каким является данный синапс — возбудительным или тормозным, — зависит от характера выделяемого пресинаптическими клетками медиатора, а также непосредственно от воспринимающего устройства — химизма мембраны постсинаптической клетки.

Таким образом, универсальным средством общения нейронов служит нервный импульс. Независимо от типа волокна, его функциональных особенностей, связи с процессом зрительных восприятий, движением или мышлением — сигналы везде практически одинаковы. Их разница состоит в разной частоте импульсов в секунду.

В мозге тонко дифференцированы различные зоны, ответственные за определённые функции и состояние организма. Различные психоэмоциональные эффекты (вегетативные, отвечающие за питание и рост, и двигательные) достигаются за счёт существования в них тормозных и возбудительных синапсов, наличия в этих специализированных участках довольно обширного ассортимента нейромедиаторов.

В настоящее время известно около 30 химических соединений, выполняющих в мозге медиаторную функцию. Они не разбросаны беспорядочно по причудливому рисунку ткани мозга, а сосредоточены в определённых его областях, в тех группах нейронов, аксоны которых устремлены к высокоспециализированным областям мозга.

Определённую группу составляют вещества, образующиеся при трансформации аминокислот. По строению они относятся к аминам (обширный класс азотсодержащих органических соединений). Они синтезируются в мозге в малых количествах, но в структуре их молекул закодирована информация, служащая мощным регулятором вегетативных функций, психического, эмоционального состояния, двигательных реакций. Чаще всего нейроны обладают ферментным набором, необходимым для образования медиатора одного типа. Синтезированные впрок молекулы хранятся в специальных кладовых — синаптических пузырьках, расположенных в окончании аксона. Они защищены от разрушения ферментов, действующих на них после выхода из пузырьков. Освобождение из хранилищ осуществляет нервный импульс. Медиатор связывается с рецепторами постсинаптической мембраны, и тут реализуется перевод всего запаса информации химического сигнала в специфическую физиологическую реакцию, например образование и выделение гормона клетками железы, сокращение мышечного волокна, возбуждение или торможение нейрона. В зависимости от характера (назначения) аксонов нейронов, вырабатывающих соответствующие медиаторы в определённые доли мозга, наблюдаются характерные эффекты. Многие нервные клетки, вырабатывающие из аминокислоты тирозина медиатор норадреналин, сосредоточены в стволе мозга, образуя там скопления.Их аксоны достигают гипоталамуса (центра вегетативных функций организма), мозжечка и переднего мозга. Оказалось, что норадреналин (один из медиаторов) контролирует двигательную активность, эмоциональное и психическое состояние. Он причастен к поддержанию бодрствования, системе поощрения («центр удовольствия»), словом, формированию приятных, положительных эмоций, к регуляции настроения в целом.

Предшественник синтеза норадреналина — дофамин сосредоточен в нейронах в области среднего мозга. Их аксоны достигают переднего мозга, где участвуют в регуляции эмоционального состояния; в области полосатого тела[97] в головном мозге они выполняют ведущую роль в регуляции сложных движений.

Общеизвестны опыты со вживлением микроэлектродов в стволовую часть мозга, проводившиеся на крысах: стремление получать удовольствие заставляло животных самостоятельно замыкать электрическую цепь, раздражая и активируя тем самым нейроны, которые с помощью специфических химических посредников (норадреналина, дофамина) стимулировали их положительный эмоциональный фон.

Образуемый из аминокислоты триптофана медиатор серотонин сосредоточен в области ствола мозга. Нейроны этого центра достигают гипоталамуса, других областей мозга. Считают, что серотонин участвует в процессах терморегуляции, чувствительного восприятия, перехода от бодрствования ко сну.

Есть вещества, обладающие возбуждающим воздействием на большинство нейронов мозга. Этой способностью обладают глутаминовая и аспарагиновая аминокислоты — естественные продукты гидролиза (расщепления органических соединений с участием воды) белков. Ферментативное отщепление от глутаминовой кислоты одной функциональной группы ведёт к образованию гамма-аминомасляной кислоты (ГАМК) — универсального тормозного медиатора в центральной нервной системе.

Сосуды головного мозга обладают уникальной особенностью: за счёт дополнительного плотного слоя окружающих глиальных клеток стенка их непроницаема для множества соединений. Так природа защитила мозг как от случайных соединений, так и от обычных естественных промежуточных и конечных продуктов обмена. Многие аминокислоты, холестерин, лекарственные препараты не в состоянии пассивно поступать из общего кровотока в ткань мозга. Молекулы должны быть либо очень маленькими (как, например, молекулы кислорода), либо легко растворяться в липидных компонентах мембран глиальных клеток. Этим требованиям вполне соответствует этанол.

Молекула этанола характеризуется малыми размерами и обладает выраженными дифильными свойствами(способностью растворяться в воде и растворять жиры). Гематоэнцефалический барьер(физиологический механизм, регулирующий обмен веществ между кровью, спинномозговой жидкостью и мозгом; защищает центральную нервную систему от проникновения чужеродных веществ, введённых в кровь, или продуктов нарушенного обмена веществ)для молекулы этанола — не преграда. Хотя основная часть выпитого алкоголя (около 80 %) окисляется в печени, через 85 секунд после появления спирта в крови, он обнаруживается в спинномозговой жидкости, в ткани мозга. Если концентрацию алкоголя в крови принять за единицу, то в печени она будет 1,45, в спинно-мозговой жидкости — 1,50, а в головном мозге — 1,75. Многие клетки мозга таким образом оказываются обречены. Воздействие этанола на пока ещё целые мембраны нейрона, а также вмешательство этанола в нормальную работу веществ-медиаторов искажает поступающие к головному мозгу сигналы, что является нарушением работы всей нервно-психической деятельности человека.








Дата добавления: 2014-12-24; просмотров: 675;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.