Систематика элементарных частиц
Идея построения материального мира из элементарных, фундаментальных кирпичиков (объектов) восходит к Демокриту, к его атомной гипотезе. В настоящее время можно дать вполне определенную классификацию элементарных частиц и их взаимодействий. Вместе с частицами существуют и античастицы (впервые предсказанные теоретически великим английским физиком-теоретиком Полем Дираком в 1928 г.). Характерная особенность частиц и античастиц заключается в том, что при их взаимодействии, столкновении происходит их взаимное уничтожение - аннигиляция, сопровождающаяся образованием фотонов.
В начале XX века, точнее к началу его тридцатых годов, физикам были уже известны (кроме электрона) такие элементарные частицы, как протон, нейтрон и позитрон. Для построения атома и его ядра как неких структур вполне, казалось бы, достаточно трех частиц — протона, нейтрона и электрона. По существу, так оно и есть, ядро атома состоит из протонов и нейтронов, а электроны занимают определенные энергетические состояния вблизи ядра, которые впервые рассчитал еще в 1913 году Нильс Бор.
Но, очевидно, природа атома и элементарных частиц не такая простая, как нам этого хотелось бы. И в настоящее, время семейство элементарных частиц (с учетом очень короткоживущих — так называемых резонансов) насчитывает большее число, чем количество химических элементов в таблице Д. И. Менделеева (а их сейчас открыто 118).
Сегодня элементарные частицы подразделяют на 3 класса: адроны (адроны включают в себя барионы и мезоны, и тогда можно говорить о 4 классах частиц), лептоны и фотон.
Подразделение элементарных частиц на классы связано с видами взаимодействий, существующих в природе. Всего в природе существует 4 вида взаимодействия, и ниже они представлены по степени убывания их интенсивности.
1) Сильные взаимодействия (осуществляются только среди адронов).
2) Электромагнитные взаимодействия (осуществляются между всеми элементарными частицами, имеющими электрический заряд, и между фотонами, не имеющими электрический заряд, но являющимися переносчиками электромагнитного взаимодействия).
3) Слабые взаимодействия обуславливают медленные распады частиц с участием нейтрино. В «чистом» виде (т. е. без наложения, например, с электромагнитным взаимодействием) слабые взаимодействия существуют только у нейтрино.
4) Гравитационные взаимодействия (притяжение между любыми массами).
В начале XXI века, мы имеем достаточно четкую картину об одном, самом крупном классе элементарных частиц — классе адронов. Адроны, в свою очередь, как уже отмечалось, подразделяются на барионы и мезоны. Барионы в своем составе содержат нуклоны (это протоны и нейтроны, частицы, из которых состоят ядра атомов) и гипероны. Гиперо́н — элементарная частица, являющаяся барионом (а следовательно и адроном, и фермионом) с ненулевой странностью (то есть содержащая один или несколько s-кварков), но с нулевым очарованием и нулевой прелестью. Все адроны объединяет то, что они подвержены (или обладают?) сильному взаимодействию.
В 1961 году американский физик Мюррей Гелл-Манн и израильский - Ювал Нееман, одновременно, но независимо друг от друга предложили унитарную систематику. Эта система группировала адроны и мезоны в мультиплеты по 8, 10, 18 и 27 частиц. Частицы каждого мультиплета считались в таком случае различными состояниями одной и той же элементарной частицы.
Три года спустя, в 1964 г., появилась гипотеза о кварках как самых фундаментальных частиц материи или элементов праматерии. Гипотеза эта была высказана и обоснована все тем же Гелл-Манном и независимо от него Дж. Цвейгом. В гипотезе Гелл-Манна и Цвейга все барионы могут быть составлены из трех различных кварков, а мезоны из двух — кварка и антикварка. Обозначим символом q кварк, В — барион, М — мезон. Тогда B = (qqq), М= (qq*), q* — антикварк.
Знание характеристик адронов позволяет осуществить их классификацию и соответствующую классификацию кварков. Из принятой структуры барионов В a (qqq) следует, что каждому кварку нужно приписать барионное число В = +1/3 (соответственно, антикварку — В = - 1/3). Электрические заряды кварков оказываются дробными.
Сейчас физики предполагают существование 6 типов («ароматов») кварков. Первая тройка кварков — u, d, s (соответственно от слов up — верхний, down — нижний, strange — странный. Потом очарованный (с (charm)), t (top) –истинный и красивый (b (beauty)). Электрический заряд Q у u-кварка равен +2/3, у d- и s-квар-ков Q = -1/3 заряда электрона.
Немного позднее, после того как уже появилась гипотеза кварков, в 1965 году, было высказано предположение, что каждый из кварков может быть представлен тремя разновидностями, различающимися особой характеристикой, названной «цветом». Итак, если в природе существует 6 разновидностей кварков и у каждого из них могут быть 3 «цвета», то получается всего 18 разновидностей кварков и столько же антикварков.
В целом адроны являются бесцветными образованиями, в отличие от кварков, несущих цвет. Цвета, которыми обладают кварки, могут быть названы (условно) красный, желтый и синий. Антикварки тоже обладают цветом, есть также три разновидности их цвета — фиолетовый, оранжевый, зеленый. Таким образом, любой известный адрон (барион или мезон) может быть построен сочетанием из 6-ти кварков и антикварков различных цветов.
d – нижний
u – верхний
s – странный
c – очарованный
b – прелестный
t – истинный
Для понимания механизма связи кварков в адроны главное значение имеет вопрос о характере сил или взаимодействий между кварками. Как установила квантовая хромодинамика (наука, изучающая этот круг явлений), взаимодействие между кварками осуществляется глюонами (от англ. glue — клей), виртуальными частицами, которыми обмениваются кварки между собой. Причем разновидностей глюонов может быть восемь. Характер взаимодействия между кварками таков, что с увеличением расстояния между ними обменные силы не уменьшаются, а, наоборот, увеличиваются! Чем ближе кварки друг к другу, тем они свободнее!
Именно по этой причине или природе, в свободном состоянии не обнаружен ни один кварк, хотя уже более сорока лет ученые не сомневаются в их существовании. Экспериментальным путем установлено, что удерживающий потенциал кварка внутри адрона линейно зависит от расстояния, и, чтобы оторвать кварк от адрона, нужно затратить бесконечно большую энергию.
Как об этом упоминалось ранее, другие элементарные частицы — лептоны, не подвержены сильному взаимодействию, они испытывают только электромагнитное и слабое взаимодействия.
Интересно напомнить еще раз, что кварков в свободном состоянии не обнаружено, а, согласно квантовой хромодинамике, в свободном состоянии их и не может быть (таково современное состояние дел в физике элементарных частиц!). Вся необычность свойств объектов микромира. Изменять и наше, как правило, классическое мышление, на новое, неклассическое восприятие мира.
Резюме
1) В природе существует множество элементарных частиц, большинство из которых являются нестабильными.
2) Все элементарные частицы можно подразделить главным образом по основному признаку — вид взаимодействия, на 4 класса — фотон, лептоны, барионы и мезоны.
3) Частицы, обладающие сильным взаимодействием, — адроны (барионы и мезоны), состоят из 6 типов кварков. Кварки — субъядерные частицы обладающие дробным электрическим зарядом, не существуют в свободном состоянии.
4) Взаимодействие микромира имеет обменный характер, т. е. осуществляется некоторыми виртуальными частицами. Так, сильное взаимодействие между кварками осуществляется глюонами (8 разновидностей), слабое взаимодействие осуществляется векторными бозонами, электромагнитное взаимодействие — виртуальными фотонами, гравитационное взаимодействие — гравитонами.
Рис. - Стандартная модель элементарных частиц; в правой колонке — калибровочные бозоны
(три поколения материи (фермионы))
(переносчики взаимодействия)
Спин (от англ. spin — вертеть[-ся], вращение) — собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. Спином называют также собственный момент импульса атомного ядра или атома.
Ква́нтовое число́ в квантовой механике — численное значение какой-либо квантованной переменной микроскопического объекта (элементарной частицы, ядра, атома и т. д.), характеризующее состояние частицы. Задание квантовых чисел полностью характеризует состояние частицы.
Некоторые квантовые числа связаны с движением в пространстве и характеризуют пространственное распределение волновой функции частицы. Это, например, главное (nr), орбитальное (l) и магнитное (m) квантовые числа электрона в атоме, которые определяются как число узлов радиальной волновой функции, значение орбитального углового момента и его проекция на заданную ось, соответственно.
Станда́ртная моде́ль — теоретическая конструкция в физике элементарных частиц, описывающая электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Стандартная модель не включает в себя гравитацию. Стандартная модель состоит из следующих положений:
· Всё вещество состоит из 24 фундаментальных частиц-фермионов: 6 лептонов (электрон, мюон, тау-лептон, электронное нейтрино, мюонное нейтрино и тау-нейтрино), 6 кварков (u, d, s, c, b, t) и 12 соответствующих им античастиц, которые можно объединить в три поколения фермионов.
· Кварки участвуют в сильных, слабых и электромагнитных взаимодействиях; заряжённые лептоны (электрон, мюон, тау-лептон) — в слабых и электромагнитных; нейтрино — только в слабых взаимодействиях.
· Все три типа взаимодействий возникают как следствие постулата, что наш мир симметричен относительно трёх типов калибровочных преобразований.
Частицами-переносчиками взаимодействий являются:
· 8 глюонов для сильного взаимодействия (группа симметрии SU(3));
· 3 тяжёлых калибровочных бозона (W+, W−, Z0) для слабого взаимодействия (группа симметрии SU(2));
· один фотон для электромагнитного взаимодействия (группа симметрии U(1)).
Дата добавления: 2014-12-21; просмотров: 2043;