Глава 2. Модели представления знаний
Знания – это хорошо структурированные данные, а данные– информация, полученная в результате наблюдений или измерений, отдельных свойств (атрибутов), характеризующих объект, процессы и явления предметной области [2,8]. В настоящее время разработаны различные модели представления знаний, которые сводятся к классам:
- продукционные модели;
- формально-логические модели;
- фреймовые модели;
- семантические сети.
Продукционные и формально-логические модели относятся к классу модульных, т.е. оперируют отдельными элементами знаний (правилами, аксиомами предметной области). Фреймовые модели и семантические сети относятся к классу сетевых моделей, поскольку представляют возможность связывать фрагменты знаний через отношения.
Продукционная модель
Продукционная модель, или модель, основанная на правилах, позволяет представить знания в виде конструкций типа «Если (условие), то (действие)». Под условием (антецедентом) понимается некоторое предложение – образец, по которому осуществляется поиск в БЗ, а под действием (консеквентом) – действия, выполняемые при успешном исходе поиска. Они могут быть промежуточными, выступающими далее как условия, и терминальными (целевыми), завершающими работу системы.
Пример 2.1
Если «двигатель не заводится» и «стартер не работает», то «неполадки в системе электропитания стартера».
Антецедент и консеквент формируются из атрибутов (двигатель, стартер) и значений (не заводится, не работает).
Пример 2.2
Если «матрица значений регрессоров мультиколлинеарна» и «сокращение числа регрессоров невозможно», то необходимо «использование для построения линейной модели метода гребневой (ридж) регрессии» [9].
В данном случае атрибутами являются матрица значений регрессоров и число регрессоров, а значениями – мультиколлинеарность, и сокращение невозможно.
В рабочей памяти продукционной системы хранятся пары «атрибут – значение», истинность которых установлена в процессе решения конкретной задачи к некоторому текущему моменту времени. Содержание рабочей памяти изменяется в процессе решения задачи, что происходит по мере срабатывания правил. Правило срабатывает, если при сопоставлении фактов, содержащихся в рабочей памяти, с образцом правила имеет место совпадение. Для представления реальных знаний используются описания с помощью триплета «объект – атрибут – значение». С введением триплета правила из БЗ могут срабатывать более одного раза в процессе одного логического вывода, поскольку одно правило может применяться к различным объектам.
Существует два типа продукционных систем – с прямыми обратным выводом. Прямой логический вывод реализует стратегию от фактов к заключению или от данных к поиску цели. При обратном выводе выдвигаются гипотезы, которые могут быть подтвержены или опровергнуты на основании фактов, поступающих в рабочую память.
Продукционная модель представления знаний используется более чем в 80% ЭС [8], поскольку обладает наглядностью, высокой модульностью, легкостью внесения дополнений и изменений, простотой логического вывода. К недостаткам продукционных моделей следует отнести отличие от структуры знаний, свойственной человеку; неясность взаимных отношений правил; сложность оценки целостного образа знаний; низкую эффективность обработки знаний. В настоящее время имеется большое число программных средств (ПС), реализующих продукционный подход по построению БЗ, например языки высокого уровня CLIPS, OPSS, «пустые» ЭС EXSYS, Kappa, GURU, инструментальные системы KEE, ARTS, PIES.
<== предыдущая лекция | | | следующая лекция ==> |
Основные разновидности ИИС и характеристики решаемых задач | | | Формально-логическая модель |