Проблема масштабного перехода для промышленных

Аппаратов

 

Проектирование и внедрение аппаратов большой единичной мощности (например, массообменных колонн до 10 м в диаметре и высотой до 100 м) выявило существенное снижение их эффективности по сравнению с лабораторными моделями (масштабный эффект). Причины:

-возникновение по сечению аппарата гидродинамических неоднородностей;

-изменение значений коэффициента турбулентного переноса;

-невозможность достижения одновременного подобия полей w,T и сi.

В связи с этим возникает проблема масштабного перехода от лабораторной модели к промышленному аппарату.

 

Традиционно она решается следующим образом:

-изготовление и исследование лабораторной модели; получение критериального уравнения;

-проектирование с использованием критериального уравнения пилотной установки; ее изготовление и исследование; коррекция критериального уравнения;

-проектирование, изготовление и исследование полупромышленной установки с целью коррекции описания;

-проектирование и изготовление промышленной установки.

Все это приводит к удорожанию и затягиванию сроков внедрения новой техники. С целью устранения этих недостатков был предложен двухуровневый подход к проектированию промышленных аппаратов на основе гидродинамического моделирования. Предполагается, что основную роль в масштабном эффекте играет изменение гидродинамической структуры потоков при переходе к аппаратам больших размеров. Пилотную и полупромышленные установку заменяют стендом, на котором в промышленном масштабе изучается небольшой по высоте участок аппарата с целью коррекции критериального уравнения.

Попытка решения проблемы масштабного перехода, привела к разработке метода сопряженного физического и математического моделирования.

 

Понятие о сопряженном физическом и математическом

Моделировании

 

Этот метод разработан в КГТУ профессором С.Г. Дьяконовым.

Сопряженное физическое и математическое моделирование базируется на принципе иерархичности (многоуровневости) пространственно-временных масштабов явлений , протекающих в промышленном аппарате, и как следствие этого, на «слабости» взаимодействия явлений различных масштабов. «Слабость» заключается в отсутствии влияния взаимодействия их на структуру математического описания явления, влияние может учитываться лишь через изменение некоторых параметров.

В этом методе аппарат представляется в виде системы, состояний из характерных зон (областей). Математическое описание каждой зоны устанавливается при ее физическом моделировании на лабораторном макете. При это оно содержит параметры, учитывающие взаимодействие между зонами. Предполагается , что структура математического описания каждой из зон при изменении масштаба не меняется , меняются лишь значения параметров.

Задача отыскания полей w,T,p,ci в аппарате заменяется определением параметров при известной структуре математического описания.

Основные этапы нового метода моделирования:

-выделение характерных зон аппарата;

-экспериментальное изучение отдельных зон на физических моделях;

-составление математических моделей зон, их идентификация по данным физического эксперимента;

-синтез математической модели аппарата в целом, ее идентификация на основе удовлетворения исчерпывающему описанию;

-проверка адекватности модели, при необходимости - коррекция;

-использование модели для проектирования и оптимизации промышленного аппарата.

Основное достоинство предлагаемого метода: переход к одноуровневой схеме проектирования промышленных аппаратов – лабораторная модель – промышленный аппарат.

 








Дата добавления: 2018-06-28; просмотров: 622;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.