Методика обучения счету (4 - 6 лет)

Единого мнения по обучению детей счёту не существует. Леушина А.М. считала: не надо спешить, надо начинать учить считать после обучения операциям над множествами.

Перед тем, как обучать детей счету, необходимо создавать ситуации, в которых дети сталкиваются с необходимостью умения считать.

Обучение счету происходит на основе сравнения двух групп предметов по количеству.

1 этап. Воспитатель сам ведет процесс счета, а дети повторяют за ним итоговое число. Показывается независимость числа предметов от других признаков предметов.

2 этап. Воспитатель учит детей процессу счета и знакомит с образованием каждого числа, учит сравнивать смежные числа. Сначала детей учат считать в пределах 3, а потом в пределах 5, затем - 10 (по пр. «Пралеска»), по программе «Радуга» - до 20 (на седьмом году жизни). М. Монтессори разработала методику и материал для обучения счету в пределах 1000.

Рассмотрим пример обучения счету до трёх.

На 1 этапе воспитатель предлагает детям две группы предметов, расставленные в два параллельных ряда, расположенные один под одним (зайчики и белочки). Вопросы:

- Сколько зайчиков (белочек)?

- Поровну ли зайчиков и белочек?

Далее добавляется один предмет к одному из этих множеств (прискакал зайчик).

- Поровну ли сейчас белочек и зайчиков?

- Сколько было, сколько стало зайчиков?

Воспитатель сам ведет процесс счета («Один, два, три». Обводит рукой все множество. «Всего три зайчика»). Дети следят за процессом счета и повторяют итоговое число – «три».

Добавляем еще одну белочку.

- Поровну ли теперь зайчиков и белочек?

- Сколько стало белочек?

Воспитатель считает белочек (одна, две, три; всего три белочки). Согласовывает существительные и числительные в роде и числе. Дети видят, что числительное «три» является общим показателем количества для зайчиков и белочек.

На 2 этапе, обучая детей процессу счета, воспитатель побуждает их придерживаться следующих правил:

1. Согласовывать каждое числительное с одним предметом и одним движением.

2. Согласовывать числительное и существительное в роде, числе, падеже.

3. После каждого числительного существительное не повторяем (чтобы процесс счета шел абстрактно).

4. После называния последнего числительного необходимо обвести всю группу предметов круговым жестом и назвать итоговое число.

5. Называя итоговое число, произносим соответствующее существительное.

6. Счет необходимо вести правой рукой слева направо (чтобы у детей сложился стереотип).

7. Нельзя вместо числительного «один» говорить слово «раз» для ответа на вопрос «сколько?».

Рассмотрим, как показать образование числа (например, числа 3).

Необходимо опираться на сравнение двух множеств по количеству. Вопросы:

- Сколько белочек? (две)

- Сколько зайчиков? (два)

Добавляем одного зайчика.

- Сколько стало зайчиков?

- Сколько было?

- Сколько добавили, чтобы стало 3?

- Как получить число 3? (Надо к двум добавить единицу, получим 3).

В дальнейшем (после того, как дети научатся считать до четырех) необходимо показать образование числа 3 путем уменьшения множества на единицу. Т.о., образование каждого числа показывается двумя способами, путем увеличения и уменьшения множества на 1.

1.4.6. Методика обучения отсчитыванию предметов (4 – 6 лет)

С помощью проблемной ситуации необходимо показать отличие процесса счета от процесса отсчитывания.

Сосчитать – это значит определить, сколько всего элементов в множестве. Отсчитать – выделить указанное количество элементов из множества.

Правила счета и отсчитывания совпадают, однако при обучении отсчитыванию особое внимание следует уделить следующему правилу: числительное надо называть лишь на 1 момент движения.

Виды упражнений по отсчитыванию:

1. Отсчитывание по образцу (столько-сколько); сначала образец дается в непосредственной близости, а затем на расстоянии;

2. Отсчитывание по названному числу (или показанной цифре);

3. Детям старшего возраста предлагается запомнить 2 смежных числа и отсчитать 2 группы предметов (из корзины отсчитать 2 яблока и 3 груши); обращается внимание на то, чтобы дети запомнили какое количество предметов надо отсчитать (просим детей повторить названные числа).

1.4.7. Методика обучения порядковому счету (4 – 6 лет)

1 этап. Сначала детям предлагаются подготовительные упражнения (с несколькими видами наглядного материала), в которых показывается, что для ответа на вопрос «сколько?» необходимо использовать числительные «один, два, три», т.е. количественные. При этом не важно, в каком направлении ведется счет и как предметы расположены в пространстве.

Затем знакомство с порядковым счетом проводится в процессе драматизации сказки («Теремок», «Репка», «Колобок»).

Воспитатель показывает детям, что для ответа на вопрос «Какой по счету?» используются порядковые числительные: первый, второй, третий и т.д.. Важно, чтобы предметы располагались линейно и указывалось направление счета.

Пример: сказка «Теремок».

Воспитатель выкладывает героев сказки. Выясняет сколько всего, предлагает детям сосчитать. Затем сам рассказывает, кто какой по счету пришел: первая – мышка, вторая - лягушка…. После этого задаются 2 вида вопросов:

- Кто пришел первым, вторым, третьим…?

- Каким по счету стоит мышка, ежик…? (указывается, что считать следует слева направо).

Затем предлагается ответить на те же вопросы, но счет вести справа налево. После этого воспитатель подводит детей к тому, что определить место предмета среди других можно лишь, если герои стоят в ряд.

Для закрепления проводятся упражнения, в которых определяется: какой предмет каким по счету расположен. Например: в процессе ознакомления с геометрическими фигурами: «Как называется фигура, которая стоит на третьем месте?».

2 этап. Показывается детям, в каких случаях используются количественные, а в каких порядковые числительные. Предлагаются упражнения, в которых задаем 2 вопроса: «Сколько всего?» и «Какой по счету?». Следим, какие числительные используют дети. Поясняем, в каком случае, какие числительные надо произносить. Детей подводят к выводу, что для того, чтобы определить, сколько предметов, используют количественный счет, а чтобы определить место предмета среди других, используется порядковый счет.

Кроме таких упражнений важно создавать ситуации в повседневной жизни и играх, в которых дети видели бы отличия в использовании количественного и порядкового счета. Например, в игре «Театр» уточняем, что обозначает цифра на билете: сколько всего мест или какое по счёту указанное место.

Виды упражнений:

- определить номер указанного предмета;

- назвать предмет по указанному номеру.

Игра «Что изменилось?» (Выясняется, на каком месте расположена игрушка. Дается команда «Глазки спят». Затем воспитатель меняет место расположения игрушки. После слов «глазки открыли» предлагается тем, кто заметил изменения, поднять руку и ответить: какой по порядку эта игрушка стояла раньше, а какой стоит сейчас).

1.4.8. Методика ознакомления с цифрами (3 – 5 лет)

Ознакомление с названием и внешним видом цифры идет в возрасте до четырёх лет, а после обучения счету детей знакомят с сущностью цифр.

1 этап.

1. Воспитатель в различных ситуациях знакомит детей с именем и внешним видом цифры (в процессе прогулки обращает внимание на номера домов, машин; на номера страниц).

2. Воспитатель читает стишки, в которых описывается внешний вид цифр (С.Маршак «Веселый счет», Г. Виеру «Считалочка»).

2 этап: (ср.возр.). Как только дети научились считать в соответствующих пределах, их необходимо познакомить с сущностью каждой цифры последовательно. Предлагается обозначить в группе количество предметов разными способами: соответствующим количеством счетных палочек, соответствующей числовой карточкой, и, наконец, с помощью цифр.

Можно предложить детям рассмотреть таблицу, где нарисовано одно и то же количество разных предметов и все они обозначены одной цифрой.

Дети подводятся к тому, что одинаковое количество предметов всегда обозначается одной и той же цифрой. Отличие понятия «число» и «цифра» (лiк – число, лiчба - цифра): цифра - значок или рисунок, с помощью которого можно написать число или указать количество предметов. Надо понимать, что число изображается не только с помощью цифры. Можно познакомить детей с римской нумерацией – изображением числа с помощью рисунков или предложить цветные числа – палочки Кьюизенера.

Упражнения на закрепление сущности цифр:

- Подобрать цифру для соответствующего множества.

- Создать (найти) группу предметов, соответствующую по количеству показанной цифре.

Игры: «Найди пару» (лото). «Найди свой домик».

Знакомство с цифрой 0.

Детям предлагается 3 блюдца: на одном - 3 предмета, на другом - 5, на третьем - ни одного. Просим обозначить с помощью цифр количество предметов в каждом блюдце. Дети могут сообразить, что на пустое блюдце надо положить «0». Если дети затрудняются, то воспитатель читает стихотворение про «0»: Цифра вроде буквы «О» - это «ноль» иль «ничего». А затем поясняем, что отсутствие предметов также обозначаем цифрой, это – цифра «0».

Знакомство с изображением числа 10.

Надо показать детям, что число 10 изображается с помощью двух цифр «1» и «0». Воспитатель читает соответствующий стих.

Круглый ноль такой хорошенький, но не значит ничегошеньки.

Ну, а если рядом с ним единицу примостим –

Он побольше станет весить, потому что это - десять. (С.Я.Маршак)

Для закрепления подходят те же игры, что и для других цифр. В игры и упражнения включаем 0 и 10.

1.4.9 Формирование представлений о составе числа из отдельных единиц в пределах 5 (5 – 6 лет)

Эта задача является подготовительной для обучения операциям над числами. Наглядный материал должен отличаться хотя бы по 1-му признаку (видовому) и быть однородным.

Методика: детям предлагается 3 (4, 5) предметов (например, флажки разного цвета) и задаются следующие вопросы:

- Сколько всего предметов?

- Сколько предметов одного вида? (Сколько красных флажков? Сколько синих флажков? Сколько зеленых флажков?)

Вывод: у нас всего 3 флажка: 1 красный, 1 зеленый, 1 синий.

Аналогичная работа проводится еще с двумя видами наглядного материала, а затем делается обобщающий вывод: 3 это 1, 1 и 1. Для закрепления предлагается назвать разные предметы (например, овощи), чтобы их всего было 3.

Аналогичным образом рассматривается состав чисел 4 и 5.

Для закрепления предлагаются игры: «Я знаю 5 имен девочек», «Назови 5 разных предметов мебели (овощей)», «Кто быстрее назовет».

На первых порах детям разрешается загибать пальчики или называть слова-числительные, но к 6 годам дети должны научиться в уме удерживать состав числа.

1.4.10 Формирование представлений о составе целого множества из частей (5 – 6 лет)

Эта задача решается с целью подготовки детей к пониманию состава числа из меньших чисел. Воспитатель берет два равночисленных множества однородных предметов, в одном из них предметы отличаются по одному признаку (цвету, форме и т.д.). Например, кружочки – с одной стороны красного цвета, а с другой – синего. Педагог выясняет, сколько элементов в каждом множестве (например, по 5), а затем выкладывает из элементов второго множества разные по численности части, отличающиеся по цвету. Всего получится 4 варианта: 1 синий и 4 красных, 2 синих и 3 красных, 3 синих и 2 красных, 4 синих и 1 красный. Затем детям предлагается следующие виды упражнений:

- Выложить (или нарисовать) столько кружочков, сколько не хватает до целого множества.

- Положить в ряд пять квадратов. Под ними положить 2 (3, 4) круга и столько треугольников, чтобы вместе получилось 5 фигур.

- Взять 5 квадратов двух цветов и рассказать, сколько всего квадратов и сколько каждого цвета.

- Разложить 5 пуговиц на 2 тарелочки разными способами, каждый раз проговаривая, сколько пуговиц на каждой тарелочке.

1.4.11 Формирование представлений об отношениях между числами. Сравнение чисел (4 – 6 лет)

1 этап (ср.возр.). Детей учат сравнивать смежные числа на основе сравнения 2-х множеств по количеству.

Выясняется, каких предметов больше, сколько каждого вида.

Воспитатель подводит детей к выводу: «Раз мишек больше и мишек 4, то число 4 больше чем 3».

2 этап (ср.возр). Показывается постоянство отношений «больше» и «меньше» между двумя числами, т.е. что 4 всегда больше 3. Для этого в упражнениях меняются качественные признаки предметов и их пространственное расположение.

3 этап (ст.возр.). Показывается, что отношения «больше» и «меньше» относительны, т.е. что число 3<4, но 3>2. Для этого предлагается сравнивать сразу 3 последовательных числа и побуждать детей при ответе обязательно уточнять: данное число «больше» («меньше») какого числа.

4 этап (ст.возр). Детей учат сравнивать несмежные числа. Рассуждение проводится на основе свойства транзитивности. Если 3<4<5<6, значит 3<6. При рассуждении следует опираться на наглядно-практический прием «числовая лесенка» (раскладывание предметов в убывающем или возрастающем порядке в параллельные ряды строго один под одним).

Лишние предметы должны быть другого цвета (формы).

Детям показывается, что каждое число больше всех предыдущих, но меньше всех последующих.

Игры и упражнения: «Живые числа» (построение в правильном порядке), «Что изменилось» (какое число пропущено или поменялось местами и почему), «Продолжай» (с мячом), «Считай наоборот», «Лото», «Назови соседей».

Во всех этих играх дети должны дать словесный отсчет.

1.4.12 Формирование понимания сохранения количества (4 – 6 лет)

Количество не зависит ни от качественных признаков предметов, ни от их пространственного расположения, ни от направления счета. Чтобы подвести детей к такому выводу, проводятся упражнения на сравнение двух групп предметов по количеству.

На первом этапе подбираются легкие для детей признаки, с возрастом они усложняются: цвет – форма – величина – расстояние между предметами – разное расположение в пространстве – направление счета – объединение двух и более признаков. Каждое упражнение должно проводиться в различных вариациях. В упражнениях задания должны быть сформулированы так: каких предметов больше (меньше или поровну ли предметов), как узнать?

Для выполнения задания и ответа на вопросы дети сами выбирают 1 из приемов сравнения групп предметов по количеству (наложение, соединение стрелками, счет и т.д.)

Игры: «Найди пару», «Найди свой домик», «Точечки».

1.4.13 Обучение счету предметов с помощью различных анализаторов (4 – 6 лет)

Детям показывается, что считать можно элементы разных множеств, а не только видимые предметы. Это дети должны усвоить для обобщения понятия числа.

Виды упражнений: счет звуков; счет движений; счет предметов на ощупь.

Варианты упражнений:

-Выполнение по образцу (столько-сколько): хлопни столько раз, сколько я.

-Сосчитывание количества звуков (движений, предметов на ощупь). Результат счета можно называть или показывать с помощью цифр.

-Выполнение задания по названному числу или показанной цифре.

-Смешанные упражнения (например, присесть столько раз, сколько услышал звуков).

Усложнения:

1. Выполнить движений на 1 больше или меньше.

2. Посчитать сколько всего звуков и сколько звуков воспроизведено на каком инструменте.

На 1-м этапе (в мл.возр.) предлагается воспроизвести 1 или много движений (звуков) по образцу. В игре «Ходим кругом друг за другом» дети должны повторить те движения и столько раз, как показал ведущий.

На 2-м этапе (в ср.возр.) учат детей считать звуки и движения в пределах 5, считать предметы на ощупь (карточки, с нашитыми в один ряд пуговицами, прикрытыми салфеткой или в мешочке).

На 3-м этапе (в ст.возр.) учат считать звуки, движения и предметы на ощупь в пределах 10. (Пуговицы пришиваем мелкие, предметы раскладываем не обязательно в ряд).

Требования к извлечению звуков и выполнению движений: звуки должны извлекаться громко, ритмично, в умеренном темпе, за ширмой, обращаем внимание на то, чтобы дети слушали молча до самого конца, считали про себя, если дети неправильно сказали – педагог повторяет, если снова неправильно – уменьшает количество. Движения должны быть ритмичные и в умеренном темпе (движения считаем в целом).

Игры «Угадай сколько», «Кто правильно».

1.4.14 Обучение делению предметов на равные части (4 – 6 лет)

1 этап. На занятиях по изодеятельности детей учат делить на 2 равные части плоские симметричные предметы (начиная с квадрата), путем сгибания без разрезания.

Сгибать надо так, чтобы совпадали углы, стороны, отутюживается линия сгиба, предмет разгибается. Вопросы:

- Сколько частей?

- Равны ли части? (проверяем с помощью наложения)

- Что больше: часть или целое?

На 2-м этапе учат делить на 4 равные части, сгибая 2 раза пополам (вопросы те же).

На 3-м этапе (конец среднего и начало ст.возр.) учат делить на 2 (4) равные части путем сгибания с последующем разрезанием. Вопросы такие же, как на 1-м этапе.

Педагог поясняет, что если у нас две равные расти, то каждая из них называется «половинкой» или «одной второй (1/2)», а если получилось четыре равные расти, то каждая из них называется «четвертинкой» или «одной четвертой (¼)».

4 этап. Детей учат делить предметы на 8 и 16 равных частей аналогичным образом. Три раза сгибаем пополам - получаем 8 частей, 4 раза пополам - 16 частей. Вопросы и пояснения аналогичны, как для деления на 2 и 4 равные части. Важно обратить внимание детей, что если мы разделим предмет на 2 (4) неравные части, то их половинками (четвертинками) назвать нельзя. Это будут просто две (четыре) части.

На 1-м этапе (в мл.возр.) предлагается воспроизвести 1 или много движений (звуков) по образцу. В игре «Ходим кругом друг за другом» дети должны повторить те движения и столько раз, как показал ведущий.

На 2-м этапе (в ср.возр.) учат детей считать звуки и движения в пределах 5, считать предметы на ощупь (карточки, с нашитыми в один ряд пуговицами, прикрытыми салфеткой или в мешочке).

На 3-м этапе (в ст.возр.) учат считать звуки, движения и предметы на ощупь в пределах 10. (Пуговицы пришиваем мелкие, предметы раскладываем не обязательно в ряд).

Требования к извлечению звуков и выполнению движений: звуки должны извлекаться громко, ритмично, в умеренном темпе, за ширмой, обращаем внимание на то, чтобы дети слушали молча до самого конца, считали про себя, если дети неправильно сказали – педагог повторяет, если снова неправильно – уменьшает количество. Движения должны быть ритмичные и в умеренном темпе (движения считаем в целом).

Игры «Угадай сколько», «Кто правильно».

1.4.14 Обучение делению предметов на равные части (4 – 6 лет)

1 этап. На занятиях по изодеятельности детей учат делить на 2 равные части плоские симметричные предметы (начиная с квадрата), путем сгибания без разрезания.

Сгибать надо так, чтобы совпадали углы, стороны, отутюживается линия сгиба, предмет разгибается. Вопросы:

- Сколько частей?

- Равны ли части? (проверяем с помощью наложения)

- Что больше: часть или целое?

На 2-м этапе учат делить на 4 равные части, сгибая 2 раза пополам (вопросы те же).

На 3-м этапе (конец среднего и начало ст.возр.) учат делить на 2 (4) равные части путем сгибания с последующем разрезанием. Вопросы такие же, как на 1-м этапе.

Педагог поясняет, что если у нас две равные расти, то каждая из них называется «половинкой» или «одной второй (1/2)», а если получилось четыре равные расти, то каждая из них называется «четвертинкой» или «одной четвертой (¼)».

4 этап. Детей учат делить предметы на 8 и 16 равных частей аналогичным образом. Три раза сгибаем пополам - получаем 8 частей, 4 раза пополам - 16 частей. Вопросы и пояснения аналогичны, как для деления на 2 и 4 равные части. Важно обратить внимание детей, что если мы разделим предмет на 2 (4) неравные части, то их половинками (четвертинками) назвать нельзя. Это будут просто две (четыре) части.

5 этап. Учат детей делить объемные предметы на равные части.

Существуют два приема деления объемного предмета на равные части: на глаз или с помощью мерки-посредника. Выясняя, какая часть больше, можно взять полоску бумаги, приложить ее к объемному предмету, отрезать в том месте, где закончился предмет, согнуть ее пополам, отутюжить линию сгиба, приложить к объемному предмету, и разрезать этот предмет по линии сгиба полоски.








Дата добавления: 2017-11-04; просмотров: 273;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.034 сек.