ПАРОГАЗОВЫЕ УСТАНОВКИ
Высокий уровень температур при подводе теплоты в газотурбинной установке и низкий уровень отвода теплоты в паротурбинной установке привели к развитию комбинированного парогазового цикла, который применяется в разнообразных сочетаниях двух рабочих тел: газа и водяного пара. Парогазовый цикл содержит газотурбинную ступень в области высоких температур и паротурбинную в области низких. Отработавший в ступени газовой турбины газ отдает свою теплоту в паротурбинной ступени для промежуточного перегрева пара, нагрева питательной воды, получения пара низкого давления в котле-утилизаторе и др. На рис. 2.12 представлена простейшая схема парогазовой установки.
Рис. 2.12. Схема парогазовой установки
В камеру сгорания 2 (см. рис. 2.12) подается топливо, а компрессором 1 — сжатый воздух. Продукты сгорания, отработав в газовой турбине 3, поступают в подогреватель 6, где нагревают питательную воду, поступающую в котел, и удаляются в атмосферу. Перегретый пар, получаемый в котлоагрегате 5, расширяется в паровой турбине 9 и конденсируется в конденсаторе 8. Конденсат насосом 7 перекачивается в подогреватель 6, где обогревается и поступает затем в котел. Полезная мощность, вырабатываемая газовой и паровой турбинами, передается генераторам электрического тока 4 и 10. Соотношение между количеством отработавших газов и количеством обогреваемой питательной воды определяется из условия, что количество теплоты, отдаваемой отработавшими газами, должно равняться количеству теплоты, необходимой для подогрева питательной воды до расчетной температуры.
В парогазовой установке термический КПД общего цикла больше, чем КПД каждого из составных циклов (газового и пароводяного) и, следовательно, наибольшего из них. Строится цикл для 1 кг воды и соответствующего количества газа на 1 кг воды, определяемого из теплового баланса подогревателя.
.
АТОМНЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ
Общие положения
АЭС — это по существу тепловые электростанции, которые используют тепловую энергию ядерных реакций.
Возможность использования ядерного топлива, в основном в качестве источника теплоты связана с образованием цепной реакции деления вещества и выделением при этом огромного количества энергии.
Самоподдерживающаяся и регулируемая цепная реакция деления ядер урана обеспечивается в ядерном реакторе. Ввиду эффективности деления ядер урана при «бомбардировке» их медленными тепловыми нейтронами пока преобладают реакторы на медленных тепловых нейтронах. В качестве ядерного горючего используют обычно изотоп урана , содержание которого в природном уране составляет 0,714%; основная масса урана — изотоп (99,28%). Ядерное топливо используют обычно в твердом виде. Его заключают в предохранительную оболочку. Такого рода тепловыделяющие элементы называют твэлами, их устанавливают в рабочих каналах активной зоны реактора. Тепловая энергия, выделяющаяся при реакции деления, отводится из активной зоны реактора с помощью теплоносителя, который прокачивают под давлением через каждый рабочий канал или через всю активную зону. Наиболее распространенным теплоносителем является вода, которую подвергают тщательной очистке.
Реакторы с водяным теплоносителем могут работать в водном или паровом режиме. Во втором случае пар получается непосредственно в активной зоне реактора.
При делении ядер урана или плутония образуются быстрые нейтроны, энергия которых велика. В природном или слабо обогащенном уране, где содержание невелико, цепная реакция на быстрых нейтронах не развивается. Поэтому быстрые нейтроны замедляют до тепловых (медленных) нейтронов. В качестве замедлителей используют вещества, которые содержат элементы с малой атомной массой, обладающие низкой поглощающей способностью по отношению к нейтронам. Основными замедлителями являются вода, тяжелая вода, графит.
В настоящее время наиболее освоены реакторы на тепловых нейтронах. Такие реакторы конструктивно проще и легче управляемы по сравнению с реакторами на быстрых нейтронах. Однако перспективным направлением является использование реакторов на быстрых нейтронах с расширенным воспроизводством ядерного горючего — плутония; таким образом может быть использована большая часть
На атомных станциях России используют ядерные реакторы следующих основных типов:
РБМК (реактор большой мощности, канальный) — реактор на тепловых нейтронах, водографитовый;
ВВЭР (водоводяной энергетический реактор) — реактор на тепловых нейтронах, корпусного типа;
БН (быстрые нейтроны) — реактор на быстрых нейтронах с жидкометаллическим натриевым теплоносителем.
Единичная мощность ядерных энергоблоков достигла 1500 МВт. В настоящее время считается, что единичная мощность энергоблока АЭС ограничивается не столько техническими соображениями, сколько условиями безопасности при авариях с реакторами.
Действующие в настоящее время АЭС по технологическим требованиям работают главным образом в базовой части графика нагрузки энергосистемы с продолжительностью использования установленной мощности 6500—7000 ч/год.
Технологическая схема АЭС зависит от типа реактора, вида теплоносителя и замедлителя, а также от ряда других факторов. Схема может быть одноконтурной, двухконтурной и трехконтурной.
На рис.2.19 в качестве примера представлена двухконтурная схема АЭС для электростанций с реакторами ВВЭР. Видно, что эта схема близка к схеме КЭС, однако вместо парогенератора на органическом топливе здесь используется ядерная установка.
Рис. 2.13. Принципиальная технологическая схема АЭС с реактором типа ВВЭР: 1—реактор; 2— парогенератор; 3—турбина; 4 — генератор; 5— трансформатор; 6— конденсатор турбины; 7—конденсационный (питательный) насос; 8— главный циркуляционный насос
АЭС, так же как и КЭС, строятся по блочному принципу, как в тепломеханической, так и в электрической части.
Ядерное топливо обладает очень высокой теплотворной способностью (1кг заменяет 2900 т угля), поэтому АЭС особенно эффективны в районах, бедных топливными ресурсами, например в европейской части России.
АЭС выгодно оснащать энергоблоками большой мощности. Тогда по своим технико-экономическим показателям они не уступают КЭС, а в ряде случаев и превосходят их. В настоящее время разработаны реакторы электрической мощностью 440 и 1000 МВт типа ВВЭР, а также 1000 и 1500 МВт типа РБМК. При этом энергоблоки формируются следующим образом: реактор сочетается с двумя турбоагрегатами (реактор ВВЭР-440 и два турбоагрегата по 220 МВт, реактор ВВЭР-1000 и два турбоагрегата по 500 МВт, реактор РБМК-1500 и два турбоагрегата по 750 МВт) или с турбоагрегатом одинаковой мощности (реактор 1000 МВт и турбоагрегат 1000 МВт единичной мощности).
Перспективными являются АЭС с реакторами на быстрых нейтронах (БН), которые могут использоваться для получения тепла и электроэнергии, а также и для воспроизводства ядерного горючего. Технологическая схема энергоблока такой АЭС представлена на рис. 2.14. Реактор типа БН имеет активную зону, где происходит ядерная реакция с выделением потока быстрых нейтронов. Эти нейтроны воздействуют на элементы из 238U, который обычно в ядерных реакциях не используется, и превращают его в плутоний 239Рu, который может быть впоследствии использован на АЭС в качестве ядерного горючего. Тепло ядерной реакции отводится жидким натрием и используется для выработки электроэнергии.
Рис. 2.14. Принципиальная технологическая схема АЭС с реактором типа БН: а ~ принцип выполнения активной зоны реактора; б— технологическая схема: 1—7— аналогичны указанным на рис. 2.20; 8 — теплообменник натриевых контуров; 9 — насос нерадиоактивного натрия; 10 — насос радиоактивного натрия
Схема АЭС с реактором БН трехконтурная, в двух из них используется жидкий натрий (в контуре реактора и промежуточном). Жидкий натрий бурно реагирует с водой и водяным паром. Поэтому, чтобы избежать при авариях контакта радиоактивного натрия первого контура с водой или водяным паром, выполняют второй (промежуточный) контур, теплоносителем в котором является нерадиоактивный натрий. Рабочим телом третьего контура является вода и водяной пар.
В настоящее время в эксплуатации находятся энергоблоки типа БН, из них наиболее крупный БН-600.
АЭС не имеют выбросов дымовых газов и не имеют отходов в виде золы и шлаков. Однако удельные тепловыделения в охлаждающую воду у АЭС больше, чем у ТЭС, вследствие большего удельного расхода пара, а следовательно, и больших удельных расходов охлаждающей воды. Поэтому на большинстве новых АЭС предусматривается установка градирен, в которых теплота от охлаждающей воды отводится в атмосферу.
Важной особенностью возможного воздействия АЭС на окружающую среду является необходимость захоронения радиоактивных отходов. Это делается в специальных могильниках, которые исключают возможность воздействия радиации на людей.
Чтобы избежать влияния возможных радиоактивных выбросов АЭС на людей при авариях, применены специальные меры по повышению надежности оборудования (дублирование систем безопасности и др.), а вокруг станции создается санитарно-защитная зона.
По данным Росэнергоатома в ближайшей перспективе будет наблюдаться дальнейшее развитие атомной энергетики как по мощности АЭС, так и количеству вырабатываемой электрической энергии на АЭС России.
Дата добавления: 2017-10-09; просмотров: 662;