Показатели тесноты связи между качественными признаками

Метод корреляционных таблиц применим не только к количественным, но и к описательным (качественным) признакам, взаимосвязи между которыми часто приходится изучать при проведении различных социологических исследований путем опросов или анкетирования. В этом случае такие таблицы называют таблицами сопряженности. Они могут иметь различную размерность. Простейшая размерность – 2х2 (таблица «четырех полей»), когда по альтернативному признаку («да» – «нет», «хорошо» – «плохо» и т.д.) выделяются 2 группы. В таблице 48 приведены условные данные о распределении 500 опрошенных человек по двум показателям: наличие (отсутствии) у них прививки против гриппа и факт заболевания (незаболевания) гриппом во время его эпидемии.

Таблица 48. Распределение 500 опрошенных человек

Группа лиц Число лиц
заболевших гриппом не заболевших гриппом Итого
Сделавших прививку 30 (а) 270 (b)
Не сделавших прививку 120 (c) 80 (d)
Итого

Нетрудно заметить, что среди сделавших прививку подавляющее большинство (270 из 300, или 90%) не заболели гриппом, а среди не сделавших большая часть заболела (120 из 200, или 60%). Таким образом, можно предположить, что прививка положительно влияет на предупреждение заболевания; другими словами, можно предположить, что распределение в таблице (a, b, c, d) не случайно и существует стохастическая зависимость между группировочными признаками. Однако выводы о зависимости, сделанные «на глаз», часто могут быть ненадежными (ошибочными), поэтому они должны подкрепляться определенными статистическими критериями, например критерием Пирсона χ2. Он позволяет судить о случайности (или неслучайности) распределения в таблицах взаимной сопряженности, а следовательно, и об отсутствии или наличии зависимости между признаками группировки в таблице. Чтобы воспользоваться критерием Пирсона χ2, в таблице взаимной сопряженности наряду с эмпирическими частотами записывают теоретические частоты, рассчитываемые исходя из предположения, что распределение внутри таблицы случайно и, следовательно, зависимость между признаками группировки отсутствует. То есть считается, что распределение частот в каждой строке (столбце) таблицы пропорционально распределению частот в итоговой строке (столбце). Поэтому теоретические частоты по строкам (столбцам) рассчитывают пропорционально распределению единиц в итоговой строке (столбце).

Так, в нашем примере в итоговой строке число заболевших 150 из 500, т.е. их доля – 30%, а доля не заболевших – 70%. Следовательно, теоретические частоты в первой строке для заболевших составят 30% от 300, т.е. 0,3*300=90, а для не заболевших – 0,7*300=210. По второй строке произведем аналогичные расчеты и их результаты занесем в таблицу в скобках.

Таблица 49. Эмпирические и теоретические частоты

Группа I (да) II (нет)
I (да) 30 (90) 270 (210)
II (нет) 120 (60) 80 (140)

На сопоставлении эмпирических и теоретических частот и основан критерий Пирсона χ2, рассчитываемый по формуле (44):

.

Рассчитанное (фактическое) значение χ2 сопоставляют с табличным (критическом), определяемым по таблице Приложения 3 для заданного уровня значимости α и числа степеней свободы , где k1 и k2 – число групп по одному и второму признакам группировки (число строк и число столбцов в таблице).

В рассматриваемом примере ν=(2-1)(2-1)=1, а приняв уровень значимости α=0,01, по таблице Приложения 3 находим χ2табл=6,63. Поскольку рассчитанное значение χ2> χ2табл, значит существует стохастическая зависимость между рассматриваемыми показателями. При независимости признаков частоты теоретического и эмпирического распределений совпадают, а значит χ2=0. Чем больше различия между теоретическими и эмпирическими частотами, тем больше значение χ2 и вероятность того, что оно превысит критическое табличное значение, допустимое для случайных расхождений. Аналогично рассчитываются теоретические частоты и χ2 в таблицах большей размерности.

В корреляционном анализе недостаточно лишь выявить тем или иным методом наличие связи между исследуемыми показателями. Теснота такой связи может быть различной, поэтому весьма важно ее измерить, т.е. определить меру связи в каждом конкретном случае. В статистике для этой цели разработан ряд показателей (коэффициентов), используемых как для количественных, так и для качественных признаков.

Для измерения тесноты связи между группировочными признаками в таблицах взаимной сопряженности могут быть использованы такие показатели, как коэффициент ассоциации и контингенции (для «четырехклеточных таблиц»), а также коэффициенты взаимной сопряженности Пирсона и Чупрова (для таблиц любой размерности).

Применительно к таблице «четырех полей», частоты которых можно обозначить через a, b, c, d, коэффициент ассоциации (Д. Юла) выражается формулой (158):

. (158)

Его существенный недостаток: если в одной из четырех клеток отсутствует частота (т.е. равна 0), то 1, и тем самым преувеличена мера действительной связи.

Чтобы этого избежать, предлагается (К. Пирсоном) другой показатель – коэффициент контингенции[53]:

. (159)

Рассчитаем коэффициенты (158) и (159) для нашего примера (таблица 48):

;

Связь считается достаточно значительной и подтвержденной, если >0,5 или >0,3.

Поэтому в нашем примере оба коэффициента характеризуют достаточно большую обратную зависимость между исследуемыми признаками.

Теснота связи между 2 и более признаками измеряется с помощью коэффициентов взаимной сопряженности Пирсона (160) или Чупрова (161), рассчитываемых на основе показателя χ2 :

, (160) (161)

В нашем примере . Рассчитывать коэффициент Чупрова для таблицы «четырех полей» не рекомендуется, так как при числе степеней свободы ν=(2-1)(2-1)=1 он будет больше коэффициента Пирсона (в нашем примере КЧ=0,54). Для таблиц же большей размерности всегда КЧП.








Дата добавления: 2017-09-19; просмотров: 572;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.