БАЗЫ ДАННЫХ МОДЕЛИРОВАНИЯ

 

Перспективным направлением является использование для целей моделирования иерархических многомашинных информационно-вычислительных систем и связан­ных с ними телекоммуникационными сетями удаленных персональ­ных ЭВМ, работающих в режиме телеобработки. Таким образом, появляется необходимость в создании диалоговых систем моделирования коллективного пользования. Рассмотрим основные моменты связанные с разработкой распределенной базы данных моделирования (РБДМ).

Ключевые аспекты разработки баз данных.Важной целью применения технологии БД является создание разделяемого между функционально связанными приложениями информационного ресурса с обеспечением независимости внешнего, логического представления БД от способов ее внутренней, физической организации. в основу этой технологии положено применение реляционной модели данных (РМД), базирующейся на аппарате реляционной алгебры и математической логики. на рис. 13.

База данных. Определение базы данных в качестве разделяемого инфор­мационного ресурса компьютеризированных технологий база данных совокупность связанных данных, с одной стороны, являющихся информацией, и с другой стороны, составляющих основу для получения информации,

 

Рис. 13. Полная технологическая схема реализация БДМ

 

Предметная область.предметная область, которая будет рассматри­ваться как совокупность знаний и данных об объектах и процессах, подлежащих проектированию и хранению в БД.

Таким образом, процесс проектирования базы данных по полной технологической схеме есть процесс пошагового отображения исходной классификационной схемы предметной области в реляционную схему реализации базы данных.

Инфологический анализ и проектирование БДМ.Для инфологического проектирования характерны следующие операции:

— расширение интерфейсов описания абстракций не классифицированными свойствами

— построение инфологических структур реализации модели, в качестве структур могут использоваться любые структуры

Инфологическая модель, является основой определения источников, накопителей и получателей информации. Совокупность правил построения инфологической модели об­разует инфологическую семантику проектируемой БД, состоящую из определений связей совместности и соответствия. Она определяет пути доступа к информации . концептуальные компоненты являются символами, а инфологически компоненты соответствуют логическим словам и выражениям.

Объектно-ориентированный подход и БДМ. связан с представлени­ем предметной области в виде классов и объектов, которые в зависимости от предназначения методологии могут иметь различную природу.. Возможность применения ОП определяется способностью представить предмет моделирования в виде объектной модели.Visual C++, C++Builder, Delphi.

ОП применяется при разработке объектно-ориентированных баз данных (ООБД) и объектно-ориентированных распределенных баз данных (ООРБД). Центральной проблемой является оптимальное сочетание объектно-ориентированного и реляционного подходов (см. рис. 5.6).

ПЛАНИРОВАНИЕ ИМИТАЦИОННЫХ ЭКСПЕРИМЕНТОВ

Основные понятия планирования экспериментов. наиболее подходящей моделью последнего является абстрактная схема, называемая «черным ящиком». При таком кибернетичес­ком подходе различают входные и выходные переменные: x1, x2,…, xk; y1, y2, …, yi. В зависимости от того, какую роль играет каждая переменная в проводимом эксперименте, она может являться либо фактором, либо реакцией.. Например, в агрегативной системе (А-схеме) факторами будут входные и управля­ющие сообщения, а реакциями — выходные.

Каждый фактор хi, ,может принимать в эксперименте одно из нескольких значений, называемых уровнями. Фиксированный набор уровней факторов определяет одно из возможных состояний рассматриваемой системы. Одновременно этот набор пред­ставляет собой условия проведения одного из возможных экспериментов.

Каждому фиксированному набору уровней факторов соответствует определенная точка в многомерном пространстве, называемом факторным пространством., это показано для случая двух факторов х1 и х2 на рис. 14 (плоскость х101х2).

Существует вполне определенная связь между уровнями факторов и реакцией системы, которую можно представить в виде соотношения

.

Функцию , связывающую реакцию с факторами, называют функцией реакции, а геометрический образ, соответствующий функции реакции,— поверхностью реакции.Исследователю заранее не известен вид зависимостей , ,поэтому используют приближенные соотношения:

.

Зависимости находятся по данным эксперимента. Последний необходимо поставить при минимальных ресурсов (построить математическую модель системы и оценить ее характеристики. Факторы при проведении экспериментов могут быть управляемыми и неуправляемыми, наблюдаемыми и ненаблюдаемыми, изучаемыми и неизучаемыми, количественными и качественными, фиксированными и случайными.

Фактор называется управляемым, если его уровни целенаправленно выбираются исследователем в процессе эксперимента. Фактор называется наблюдаемым, если его значения наблюдаются и регистрируются. Обычно в машинном эксперименте с моделью Мм наблюдаемые факторы совпадают с управляемыми, так как нерационально управлять фактором, не наблюдая его. Но неуправляемый фактор также можно наблюдать. Наблюдаемые неуправляемые факторы.Обычно при машинном эксперименте с мо­делью Мм число сопутствующих факторов велико, поэтому рационально учитывать влияние лишь тех из них, которые наиболее существенно воздействуют на интересующую исследователя реак­цию.

Фактор относится к изучаемым, если он включен в модель Мм для изучения свойств системы S, а не для вспомогательных целей, например для увеличения точности эксперимента.

Фактор будет количественным, если его значения — числовые величины, влияющие на реакцию, а в противном случае фактор называется качественным. Фактор называется фиксированным, если в эксперименте иссле­дуются все интересующие экспериментатора значения фактора, а если экспериментатор исследует только некоторую случайную выборку из совокупности интересующих значений факторов, то фактор называется случайным. На основании случайных факторов могут быть сделаны вероятностные выводы и о тех значениях факторов, которые в эксперименте не исследовались.

В машинных экспериментах с моделями Мм не бывает неуправляемых или ненаблюдаемых факторов применительно к исследуемой системе S. В качестве воздействий внешней среды Е, т. е. неуправляемых и ненаблюдаемых факторов, в машинной имитационной модели выступают стохастические экзогенные переменные. Для полного определения фактора необходимо указать последовательность операций, с помощью которых устанавливаются его конкретные уровни. Такое определение фактора называется операциональным и обеспечивает однозначность понимания фактора.

Основными требованиями, предъявляемыми к факторам, являются требование управляемости фактора и требование непосредственного воздействия на объект. При планировании эксперимента обычно одновременно изменяются несколько факторов. Определим требования, которые предъявляются к совокупности факторов. — совмести­мость и независимость. При проведении машинного эксперимента с моделью Мм для оценки некоторых характеристик процесса функционирования ис­следуемой системы S экспериментатор стремится создать такие условия, которые способствуют выявлению влияния факторов, находящихся в функциональной связи с искомой характеристикой.

Для этого необходимо: отобрать факторы хi, , влияющие на искомую характеристику, и описать функциональную зависимость; установить диапазон изменения факторов ; определить координаты точек факторного пространст­ва {xl, x2, ..., xk}, в которых следует проводить экспери­мент; оценить необходимое число реализаций и их поря­док в эксперименте.

 

Для выбора конкретной модели необходимо сформулировать такие особенности, как адекватность, содержательность, простота. Под содержательностью модели планирования понимается ее способность объяснять множество уже известных фактов, выявлять новые и предсказывать их дальнейшее развитие. Простота — одно из главных достоинств модели планирования, выражающееся в реализуемости эксперимента на ЭВМ.

Виды планов экспериментов.Эксперимент, в котором реализуют­ся все возможные сочетания уровней факторов, называется полным факторным экспериментом (ПФЭ). Если выбранная модель планирования включает в себя только линейные члены полинома и их произведения, то для оценки коэффициентов модели используется план эксперимента с варьированием всех k факторов на двух уров­нях, т. е. q=2.Такие планы называются планами типа 2k, где N=2kчисло всех возможных испытаний.

Начальный этап планирования эксперимента для получения коэффициентов линейной модели основан на варьировании факторов на двух уровнях: нижнем х и верхнем xiвсимметрично рас­положенных относительно основного уровня хi0, .Геометрическая интерпретация показана на рис. 15, а. Так как каждый фактор принимает лишь два значения xiн = xi0 - Dx, и xiв = xi0 + Dx, то для стандартизации и упрощения записи условий каждого ис­пытания и обработки выборочных данных эксперимента масштабы по осям факторов выбираются так, чтобы нижний уровень соответ­ствовал — 1, верхний— +1, а основной — нулю. Это легко достигается с помощью преобразования вида

где кодированное значение i-го фактора; хi — натуральное зна­чение фактора; xi0нулевой уровень; — интервал варьирования фактора.

Расположение точек для ПФЭ типа 22 показано на рис. 14, а также на рис. 15, б. Выписывая комбинации уровней факторов для каждой экспериментальной точки квадрата, получим план D полно­го факторного эксперимента типа 22:

 

Номер испытания
-1 +1 -1 +1
-1 -1 +1 +1
Обозначения строк (1) a b ab

При этом планы можно записывать сокращенно с помощью условных буквенных обозначений строк. Для этого порядковый номер фактора ставится в соответствие строчной букве латинского алфавита: x1 ®- a, x2 ® b и т. д.

Затем для каждой строки плана выписываются латинские буквы только для факторов, находящихся на верхних уровнях; испытание со всеми факторами на нижних уровнях обозначается как (1). Запись плана в буквенных обозначениях показана в последней строчке.

Рис. 15. Геометрическая интерпретация полного факторного эксперимента типа 22: а — без масштабирования; 6 — при масштабировании по осям.

 

 








Дата добавления: 2017-09-19; просмотров: 1057;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.