СТАТИКА И ТЕРМОДИНАМИКА АТМОСФЕРЫ

Основы статики атмосферы.В этом разделе изучается вы­вод и анализ уравнения статики атмосферы dP = -pgdz . Важно от­метить, что хотя заголовок темы и предполагает отсутствие движе­ния в атмосфере, уравнение статики справедливо и для атмосфер­ных условий, когда имеет место движение воздуха. Наибольшее значение имеет интегрирование этого уравнения по высоте, т. е. оп­ределение вида зависимости P(z). Оно производится путем задания функции p(z) или T(z) для однородной (р (z) = const), изотермической Т(z)=const и политропной (у =– –> = const) атмосфер. Полная

барометрическая формула Лапласа позволяет найти наиболее близ­кий к реальному вид функции P(z). Полезно обратить внимание на понятие высоты однородной атмосферы Н для различных газов, так как она зависит от молекулярного веса газа р.

Рассмотрите связь между барометрической ступенью и сред­ней температурой внутри исследуемого слоя воздуха.

Решим несколько задач по этой теме.

Задача 1. Определить высоту однородной атмосферы сухого воздуха если Р0 = 1013,2 гПа, t = 0,0 °С. Широта места <р = 45°.

Решение. Запишем барометрическую формулу для однород­ной атмосферы

P2 = P,-pg(z2-z)

где P1, Р2 - давление на высотах z 1 и z 2

Приняв за верхнюю границу атмосферы ту высоту Н, где

Р2 = 0,0 гПа, найдем

Задача 2. Найти атмосферное давление в изотермической атмо­сфере на высоте 8000 м, при Р0 = 1013,2 гПа, t = 0,0 °С.

Решение. Из барической формулы для изотермической атмо­сферы следует:

Отсюда в изотермической атмосфере на высоте 8000м Рг = 372,5 гПа.

Таким образом, атмосферное давление в изотермической атмо­сфере уменьшается с высотой медленнее, чем в однородной атмосфере.

Задача 3. В районе экватора (φ= ) на двух метеорологиче­ских станциях, находящихся на разных высотах, одновременно измерены:.

Определить превышение верхней станции над нижней ∆z = с ошибкой не более 0,3%.

Высота t°C РгПа f%
Z1 22,0 973,5
Z2 16,9 931,4

Определить превышение верхней станции над нижней ∆z = с ошибкой не более 0,3%.

Решение. При использовании полной барометрической форму­лы в пределах тропосферы без поправки на зависимость силы тяже­сти от высоты, допускаемая ошибка в определении высоты станции не превысит 0,3%. Тогда

Находим:

Точный ответ:

 

Литература

[1]-Гл. 3, § 1-7.

Вопросы для самопроверки

1. Как меняется давление воздуха с высотой? В чем физический смысл уравнения статики? Где быстрее падает давление: при подъеме на 1 км от земли или при подъеме от 2 км до 3 км? Почему?

2. Как меняется давление с высотой в однородной атмосфере? Чему равна ее вы­сота? От чего она зависит?

3. Где располагается высота политропной атмосферы? От чего она зависит? Где располагается высота изотермической атмосферы?

4. Какие метеорологические и геофизические величины входят в полную баро­метрическую формулу? Как они вычисляются?

5. Рассчитайте барическую ступень и барометрический градиент у земли, если Г=273°С, 3^0= 1000 гПа.

6. Что такое градиент автоконвекции? Как меняется плотность воздуха при подъ­еме в атмосфере?

 

Основы термодинамики атмосферы. Изучение темы следует начать с вывода уравнения 1-го начала термодинамики примени­тельно к атмосфере, хорошо понимая, что речь идет об одной из формулировок закона сохранения энергии. Простейшим процессом в термодинамике является адиабатический, когда изучаемая части­ца воздуха перемещается без теплообмена со средой, ее окружаю­щей. При этом изменение теплосодержания такой частицы оказыва­ется связанным только с пройденным ею путем вверх dz > 0, т.е. dP < 0 или вниз dz < 0 и dP > 0.

Важным является вопрос, какую температуру примет объем су­хого или с ненасыщенным паром воздуха при адиабатическом пе­ремещении. Следует учесть, что при сухоадиабатическом подъеме порции воздуха вверх, происходит работа расширения


которая со­вершается за счет внутренней энергии, поэтому произойдет пони­жение температуры этой порции. Наоборот, при опускании объема происходит переход работы сжатия во внутреннюю энергию, и опускающийся объем нагревается. Изменения температуры объема воздуха при сухоадиабатических процессах характеризуются урав­нением Пуассона

:

Задача 1. Какую температуру приобретет объем воздуха, имеющий температуру 17,0 °С, перемещающийся адиабатически с уровня 900,0 гПа до уровня 800,0 гПа?

Решение.

Уравнение Пуассона можно решить графически по аэрологиче­ской диаграмме. Для этого надо перемещаться по сухой адиабате (или параллельно сухой адиабате).

Задача 2. Найти температуру, которую примет воздух с нена­сыщенным паром при температуре 2,7°С, если его давление адиаба­тически уменьшается от 970,0 до 822,0 гПа.

Р гПа

900

 

 

20 22.3 t°C

Рис. 1. Примеры решения задач: а - задача 2,6- задача 4

Решение. Найдите на аэрологической диаграмме точку с коор­динатами t = 2,7 °С и Р = 970 гПа. Затем, по сухой адиабате прове­дите линию до Р = 822,0 гПа. Абсцисса точки с ординатой Р = 822,0 гПа является температурой воздуха (рис. 1, кривая а).

В ряде прогностических задач удобнее рассматривать измене­ние температуры адиабатически перемещающегося объема воздуха не с изменениями давления, а с изменениями высоты. Для этого вводится понятие суходиабатического градиента температуры (%). Он равен приблизительно 1 °С/100 м.

Задача 3. Определите, какой станет температура объема сухого воздуха, переместившегося адиабатически с вершины горы к под­ножью, если высота горы 1500 м, а температура объема воздуха на вершине составляла 10,0 °С.

Решение.

Т= 10°+ 1500 м- 1°С/100м=25,0°С.

Для характеристики полного запаса энергии объемов воздуха, находившихся при разных значениях давления, используют потен­циальную температуру (в). Это термодинамическая температура, которую примет объем воздуха, если его суходиабатически привес­ти к уровню Роо - 1000,0 гПа. Потенциальная температура вычисля­ется по формуле

Потенциальную температуру можно приближенно вычислить по формуле:

где ∆Р = Роо -Ро, Ро~ давление у поверхности земли.

Третий способ определения потенциальной температуры - гра­фически (по аэрологической диаграмме). В этом случае из точки с координатами Г и Р следует перемещаться по сухой адиабате до изобары Р= 1000,0 гПа.

Задача 4. Определить потенциальную температуру воздуха, молекулярно-кинетическая температура которого 6,0 "С, а давление 820,0 гПа. Почему в данном случае потенциальная температура воздуха выше молекулярно-кинетической? (решение см. рис. 1, кривая б).


В результате перегрева отдельных масс воздуха в атмосфере может возникнуть конвективное движение воздуха. Ускорение, ко­торое получит масса воздуха за счет разности силы тяжести и силы Архимеда (силы плавучести), называется ускорением конвекции:

a=g

где Т' — температура объема воздуха на данном уровне; Т - темпе­ратура окружающей атмосферы.

Для определения высоты уровня конвекции (уровня выравни­вания температур) для воздуха с ненасыщенным паром используют формулу

=

где уа - сухоадиабатический градиент; у - градиент температуры в слое атмосферы. Кроме аналитического способа, его можно найти по аэрологической диаграмме. Для этого проводят сухую адиабату от точки с координатами Р и Т' до пересечения с кривой распреде­ления температуры в атмосфере (кривой стратификации).

 

Задача 5. При зондировании атмосферы получено:

РгПа
t°C 15,0 2,0 -6,0 -13,0 -20,7

Найти по диаграмме давление на уровне конвекции (Рконв) (вы­равнивание температур) и высоту этого уровня (Zконв) для единич­ного объема сухого воздуха, начавшего свой подъем;

а) без перегрева относительно окружающей атмосферы. На аэ­рологическую диаграмму наносим кривую стратификации (рис. 2).

Из точки с координатами Р = 1000 гПа, t = 15 °С проведем ли­нию параллельно сухой адиабате до пересечения с кривой страти­фикации. Абсцисса точки пересечения равна 14 °С.

 

Рис. 2. Определение уровня выравнивания температур

 

При подъеме на 100 м температура сухого воздуха изменяется приблизительно на 1 °С. Уровень конвекции Zконв равен

Zконв=At/γa=29,& ■ 100 м= 2980 м

б) для объема воздуха, перегретого на начальном уровне на 5 °С. Наносим кривую стратификации. Если объем воздуха перегрет на величину Δt1 то начальная его температура tнач равна

tнач1 tнач1 +Δ t1

 

 

Далее, так же, как в первом случае, получаем

Zконв = 40,7 * 100 м = 4070 м.

Объем влажного воздуха с ненасыщенным водяным паром, поднимаясь вверх, тоже изменяет свое состояние по сухоадиабатическому закону. Однако, при этом в нем увеличивается относительная влажность. Высота, на которой относительная влажность становит­ся равной 100%, называется уровнем конденсации.

Уровень конденсации по аэрологической диаграмме может быть определен, в зависимости от имеющейся информации, двумя способами:

1. Если даны температура воздуха t, давление Р, температура точки росы td, то по изограмме (линия насыщающей массовой доли водяного пара), проходящей через точку с координатами td и Р, на­ходим Sfl ,d (массовую долю насыщенного водяного пара при темпе­ратуре точки росы).

РгПа

Уровень конденсации

Рис. 3. Определение уровня конденсации при известной относительной влажности воздуха

 

Из определения точки росы следует, что SH ^=5^ (фактической массовой доле водяного пара) (рис. 3). Затем из начальной точки поднимаемся по сухой адиабате до пересечения с изограммой, рав­ной Sф. На данном уровне водяной пар, находящийся в поднимаю­щемся объеме, становится насыщенным. Это и есть уровень конден­сации. По оси ординат определяют давление на уровне конденсации Рк, по оси абсцисс - температуру на уровне конденсации tk. По разности температур начальной и на уровне конденсации, ум­ноженной на 100 м, определяют высоту уровня конденсации.

Задача 6. У поверхности земли температура 20,0 °С, давление 1000 гПа, точка росы 0,7 °С. Найти давление и температуру на уровне конденсации и его высоту.

Решение. Через точку с координатами tj = 0,7 °С и Р= 1000,0 гПа проходит изограмма 4 700. Из начальной точки (t = 20,0 °С, Р = 1000,0 гПа) поднимаемся по сухой адиабате до пересечения с изограммой 4 °/00. Из рис. 4 следует, что давление на уровне кон­денсации 750 гПа, температура -3,5 °С.

Изменение температуры при подъеме частиц от начального уровня до уровня конденсации составляет

∆t= tнач-tконв = 20,0 °С -(-3,0) °С = 23,0 °С.

Следовательно, высота уровня конденсации равна 2300 м;

2. Если даны tl, PI, f, то по изограмме, проходящей через на­чальную точку, определяют SH, затем из равенства Sф= SHf , (где /- относительная влажность в долях единицы) вычисляем Sф Из начальной точки поднимаемся по сухой адиабате до пересе­чения с изограммой, равной S


. Находим давление и температуру на уровне конденсации и по разности температур определим его высо­ту (как в предыдущем случае).

Задача 7. У поверхности земли температура 23,0 °С, давление 980 гПа, относительная влажность 67%. Найти давление и темпера­туру на уровне конденсации и по разности температур определить его высоту.

Решение. Через точку с координатами Г/ = 23,0°С и Р; = 980,0 гПа проходит изограмма 18,5700. Значит SH = 18,5 700, Sф = 18,5 • 0,67 = 12,4 °/00. Из начальной точки поднимается по сухой адиабате до пе­ресечения с изограммой 12,4 700 (рис. 6). Определяем давление на уровне конденсации. Оно равно 895 гПа. Температура на уровне конденсации 15,0°С.

∆t = 23,0 -15,0 = 8,0 °С.

Высота уровня конденсации равна 800 м.

При решении задач термодинамики атмосферы используются следующие термодинамические температуры.

 

Рис. 6. Пример решения задачи №7

 

Эквивалентная температура t3 учитывает тепло, которое вы­деляется при конденсации водяного пара. Она определяется расчет­ным способом:

tэ = t + 2,5 ,

где - фактическая массовая доля водяного пара. На уровне кон­денсации и выше уровня конденсации

Задача 8. Давление 1022 гПа, температура 6,8 °С, относитель­ная влажность 60%. Найти эквивалентную температуру адиабатиче­ски поднимающегося объема воздуха на уровнях: начальном, кон­денсации и 900 гПа.

Решение. По давлению и температуре на аэрологической диа­грамме находим точку, для которой определяем насыщающую мас­совую долю водяного пара SH. Она составляет 6,2 700. Так как водя­ной пар в начальной точке не насыщен, то фактически массовая до­ля водяного пара составляет

Где f- относительная влажность.

Поэтому tэ в начальной точке составляет:

tэ нач = 6,8 °С + 2,5 * 3,7 =16,0 °С.

Далее находим давление и температуру на уровне конденсации (соответственно 920 гПа и -1,5 °С). На этом уровне водяной пар в на­сыщенном состоянии, поэтому определенное по изограмме

Для высоты, на которой Р = 900гПа:

tэ=-3,0 + 2,5-3,4 = 5,5°С.

Эквивалентно-потенциальная t3температура находится путем приведения по сухой адиабате эквивалентной температуры к давле­нию 1000 гПа


Рис. 7. Определение эквивалентно-потенциальной температуры

Задача 9. Определить эквивалентно-потенциальную темпера­туру по данным предыдущей задачи.

Решение. На аэрологической диаграмме (рис. 7) откладываем точку с координатами ?э и Р = 1022 гПа. Затем перемещаемся по су­хой адиабате до 1000 гПа. По диаграмме находим

tэn = 14.0 °С.

На уровне конденсации (920 гПа) откладываем найденную экви­валентную температуру и перемещаемся из этой точки по сухой адиа­бате до 1000 гПа, tm для уровня конденсации также равно 14,0 °С.

Аналогичную операцию проводим для уровня 900 гПа. На этом уровне находим t3 и перемещаемся суходиабатически до 1000 гПа ( = 14,0 °С).

Псевдопотенциальная температура tnc - температура, которую примет воздух, если он поднимается от уровня конденсации по влажной адиабате до тех пор, пока весь пар не сконденсируется (т.е. влажная адиабата станет параллельной сухой), затем суходиабатически опускается до изобары 1000 гПа.

Задача 10. Определить псевдопотенциальную температуру по данным задачи 5 (см. рис. 8).

На диаграмме tnc (в К) отмечена на влажных адиабатах: tnc= 15,0 °С.

 

 

Для нахождения давления на уровне выравнивания температур (уровне конвекции) при влажноадиабатическом процессе необхо­димо найти точку пересечения влажной адиабаты с кривой страти­фикации (рис. 9).

Так как , то определить высоту уровня конвекции по способу, предложенному для сухоадиабатического процесса, нель­зя. Поступим следующим образом. От уровня конденсации переме­щаемся по сухой адиабате до изобарической поверхности, соответ­ствующей уровню выравнивания температур, и определим темпера­туру сухого воздуха на этом уровне. Найдя разность температур между начальной точкой и температурой сухого воздуха на уровне выравнивания температур (конвекции) и умножив эту разность на 100 м, получим высоту уровня конвекции.

Рис. 9. Определение уровня выравнивания температур (конвекции) при влажноадиабатическом процессе.


Знание основных законов термодинамики атмосферы позволяет определить условия устойчивости атмосферы по отношению к вер­тикальным перемещениям сухого воздуха и воздуха, содержащего насыщенный водяной пар.

Задача 11. При зондировании атмосферы получены следующие данные о распределении температуры с высотой:

Высота, м
Температура, °С 20,0 18,6 16,6 15,0 15,0 13,6

Следует определить характер устойчивости каждого слоя по от­ношению к вертикальным перемещениям сухого воздуха.

Решение. В первом слое (0-100 м) имеем

Следовательно, первый слой «сухонеустойчив». Во втором слое

у=1°с/100м;

Следовательно, второй слой «сухобезразличен».

В третьем слое

у=1,6°с/200м=0,8°с/100м;

 

Следовательно, этот слой «сухоустойчив». Аналогично, чет­вертый и пятый слои также «сухоустойчивы».

Литература

[1]-Раздел 1, гл.4, § 1-12.

Вопросы для самопроверки

1. Какие характеристики газа связаны с уравнением Пуассона?

2. Как изменяется потенциальная температура адиабатически опускающегося воздуха с насыщенным паром?

3. Как изменяется массовая доля водяного пара адиабатически поднимающегося воздуха с насыщенным паром?

4. Что характеризует кривая стратификации?

5. Почему влажноадиабатический градиент меньше сухоадиабатического?

6. Какова стратификация слоя атмосферы, в котором вертикальный градиент тем­пературы меньше влажноадиабатического?

7. Как с помощью аэрологической диаграммы оценить энергию неустойчивости?

8. Найдите с помощью аэрологической диаграммы высоту уровня конденсации, если у поверхности земли давление 900,0 гПа, температура 14,0°С и точка ро­сы 2,2 °С.

9. Вычислите потенциальную температуру воздуха на высоте 1000 м и на уровне моря, если температура воздуха на этой высоте 10,0 °С, давление на уровне мо­ря 950,0 гПа.

10. Какое изменение псевдопотенциальной температуры воздуха наблюдается при влажноадиабатическом процессе?

 








Дата добавления: 2017-09-19; просмотров: 632;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.048 сек.