Помехоподавляющие фильтры
В выпрямительных блоках используется импульсный способ преобразования электрической энергии, что создает обратные помехи - со стороны источника в сеть. Кроме того, в состав схемы выпрямительного устройства входят интегральные микросхемы и транзисторные ключи. Для нормального функционирования этих элементов необходимо исключить воздействие помех со стороны источника. То есть, под электромагнитной совместимостью (ЭМС) электронной аппаратуры понимается ее способность функционировать совместно с другими техническими средствами в условиях возможного влияния электромагнитных помех, не создавая при этом недопустимых помех другим средствам. Проблема ЭМС источников и систем электропитания стала особенно острой с появлением и широким внедрением цифровых методов обработки информации в оборудовании связи. Кроме того, в последние годы развитие радиоэлектронных систем увеличенной функциональной и элементной сложности ускоряется вследствие больших успехов в миниатюризации элементной базы. Успехи полупроводниковой электроники привели также к снижению потребляемой аппаратурой мощности, энергетических уровней информационных сигналов и увеличению различного рода входных и выходных сопротивлений элементов. Очевидно, что такие электрические цепи чрезвычайно восприимчивы к воздействию различных помех.
Можно выделить два основных вида источников помех, влияющих на работу аппаратуры связи: внешние устройства коммутации силовых токов и напряжений систем электропитания (ВИП), включая внешние воздействия типа грозы или ядерного взрыва и сами источники вторичного электропитания, имеющие в своем составе полупроводниковые приборы, которые переключают токи и напряжения с очень большими скоростями за малое время коммутации. Помехи ВИП вызваны большими скоростями коммутации токов и напряжений полупроводниковых приборов (транзисторов и выпрямительных диодов) в импульсных стабилизаторах и преобразователях. Импульсные помехи возникают и в низкочастотных выпрямителях, в частности использующихся для выпрямления переменного напряжения синусоидальной формы 220 В, 50 Гц. При использовании современной элементной базы в ВИП скорости переключения тока и напряжения достигают соответственно 200…500 А/мкС и 100…800 В/мкС при изменении соответственно тока от 0 до 2…10 А и напряжения – до нескольких сотен вольт. Верхняя граница частотного спектра помех достигает единиц- десятков мегагерц.
Помехи влияют не только на работу аппаратуры связи (потребителей ВИП), но и определяют работоспособность самих ВИП. Их маломощные схемы управления содержат в своем составе аналоговые и импульсные преобразователи информации, конструктивно расположенные в непосредственной близости от силовых переключателей энергии, силовых транзисторов и выпрямительных диодов.
Для повышения помехоустойчивости аппаратуры, питаемой от ВИП, цепи питания соединяют с корпусом прибора (землей) через конденсаторы сравнительно небольшой емкости (десятые доли, единицы микрофарад) на входе и выходе источника. В этом случае применяют проходные конденсаторы, например типа К10-44 цилиндрической формы с центральным выводом, предназначенным для пропуска проводника с током. Существует большая номенклатура специальных проходных CLC- фильтров, в том числе и малогабаритных, обеспечивающих значительное затухание сигнала помехи в широком диапазоне частот. Электрическая изоляция корпусов приборов и систем от элементов схемы обусловливает наличие двух видов высокочастотных помех, наводимых на соединительных проводниках или печатных дорожках электронных приборов и ВИП. Первый вид – дифференциальное напряжение помехи. Такой сигнал измеряется между двумя соединительными проводниками, сигнальным проводником и общим полюсом или между двумя шинами питания ВИП. Второй вид – синфазное напряжение помехи. Этот сигнал измеряется между корпусом прибора (землей) и любым соединительным проводником (шиной питания ВИП).
|
Рассмотрим эти помехи на примере схемы однотактного
преобразователя напряжения с внешним управлением, где VT – силовой транзистор, T – силовой трансформатор преобразователя, выходная обмотка которого через выпрямительный диод VD соединена с фильтрующим конденсатором С и нагрузкой (UН.). На входе источника первичного напряжения питания включен другой фильтрующий конденсатор – CП. Конденсаторы C1П и C2П на входе ВИП эквивалентны проходным конденсаторам. Конденсаторы C1Н и C2Н установлены на выходе. Конденсаторы CВ, C1М и C2М учитывают межвитковую емкость первичной обмотки силового трансформатора T и, соответственно, его межобмоточные емкости. Емкости CВ, C1М и C2М являются распределенными, их точный количественный учет при расчете помех затруднен и сложен. Для уменьшения синфазной помехи необходимо увеличивать емкости конденсаторов C1Н и C2Н. Увеличение емкости C1П и C1М , С2М приводит, при прочих равных условиях, к увеличению синфазной помехи. Отсюда следует, что установка проходных конденсаторов большой емкости только на входных шинах ВИП приводит к увеличению напряжения синфазной помехи. Поэтому обязательной является установка аналогичных конденсаторов и на выходе ВИП. Уменьшение межобмоточных емкостей С1М и С2М приводит к снижению уровня помех. Если С1М = 0, то синфазное напряжение помехи на отрицательной шине питания тоже равно нулю. Это же относится и к другой составляющей синфазной помехи. Реализация этого условия достигается введением экрана Э между обмотками трансформатора Т и подключением его к корпусу прибора.
Наиболее радикальным средством уменьшения помех внутри электронных приборов или ВИП является их подавление в местах возникновения. Существует несколько функциональных источников помех в ВИП: выпрямительные диоды, транзисторные ключи; трансформаторы и дроссели. Рассмотрим меры, которые целесообразно применять для снижения уровня помех перечисленных генераторов.
|
Наличие инерционности полупроводниковых диодов приводит к появлению кратковременного короткого замыкания первичной сети через все одновременно открытые диоды выпрямителя и наличие нулевого значения напряжения на выходе устройства на интервале времени рассасывания зарядов (tр). Резкое запирание выпрямительного диода приводит к появлению высокочастотных колебательных процессов, частота которых определяется паразитными емкостями диодов, ёмкостью монтажа, соединительных линий и их индуктивными составляющими. Временные диаграммы иллюстрируют работу выпрямителя, когда период частоты переменного напряжения сети соизмерим с интервалом времени tр, что может иметь место в высокочастотных преобразователях с синусоидальным напряжением.
Если рассматривать работу выпрямителя на наиболее распространенную в ВИП нагрузку – емкостную, то дополнительные помехи связаны с несинусоидальной формой тока через диоды. При этом длительность протекания тока через каждый из выпрямительных диодов меньше, чем при работе на активную нагрузку. С уменьшением уровня пульсаций выходного напряжения выпрямителя длительность открытого состояния диодов уменьшается, а амплитуда тока через них возрастает, что приводит к увеличению высокочастотных помех.
|
Наиболее распространенным методом снижения помех является искусственное снижение частоты паразитных колебаний. Для этого подключают параллельно каждому из диодов моста конденсаторы емкостью в несколько нанофарад, что снижает резонансную частоту паразитного контура в несколько десятков – сотен раз. Если учитывать индуктивные составляющие сопротивления подводящих питающих цепей выпрямителя, то снижение уровня помех можно достичь включением параллельно входным выводам моста аналогичного конденсатора. Наиболее универсальным и более рациональным способом снижения уровня помех является одновременное уменьшение частоты собственных колебаний паразитного контура и принудительное уменьшение добротности. Это реализуется заменой конденсаторов на последовательные RC- цепи. Оптимальное значение сопротивления резисторов этих цепей определяется условиями максимально возможного снижения добротности и достижением требуемой минимальной резонансной частоты паразитного контура. Сопротивление резистора измеряется единицами – десятками Ом и зависит от мощности выпрямителя.
Существует и другой способ снижения частоты паразитных колебаний, который обеспечивает уменьшение амплитуды импульса тока IДСm . Он заключается в искусственном увеличении индуктивной составляющей сопротивления подводящих проводников с помощью нанизывания ферритовых колец малого диаметра непосредственно на выводы выпрямительного диода. При этом возрастает длительность интервала спада тока через запирающийся диод, что вызывает понижение верхней границы частотного спектра помехи.
Наличие в импульсных источниках электропитания индуктивных элементов: трансформаторов и дросселей, перемагничивание которых осуществляется на высокой частоте, обусловливает появление вблизи них магнитных полей рассеяния, которые могут наводить в близлежащих электрических контурах соответствующие токи или напряжения. Наименьшими полями рассеяния обладают трансформаторы с сердечниками тороидальной конструкции ввиду замкнутости магнитного потока внутри трансформатора (дросселя). Влияние полей рассеяния может быть ослаблено рациональным пространственным расположением трансформатора относительно печатных плат (дорожек) или соединительных проводов схемы управления ВИП.
|
Для снижения уровня помех, наводимых в первичную сеть и в цепь нагрузки, на входе и выходе ВИП используются следующая базовая схема помехоподавляющего фильтра. Проходные конденсаторы C1 и C2 предназначены для подавления синфазной составляющей помехи, а дроссели L1 и L2 благодаря встречному включению обмоток и наличию конденсатора C3 снижают дифференциальную составляющую помех. Дроссели L3, L4 уменьшают синфазную составляющую, так как их обмотки включены согласно, а конденсаторы C4…C6 подавляют обе составляющие помехи.
При наличии в единой электросистеме многих ВИП с импульсным преобразованием энергии установка таких фильтров обязательна, так как они ослабляют влияние ВИП друг на друга по первичной сети и уменьшают влияние помех на электронные устройства. Применение входных фильтров совместно с другими мерами подавления помех дает возможность существенно увеличить проходное сопротивление импульсного ВИП, как функционального узла, не только генерирующего помехи, но и пропускающего их через себя. В частности, предложена установка электростатических экранов с изолирующими прокладками между обмотками или применение специальных типов обмоток трансформаторов.
1.
| <== предыдущая лекция | | | следующая лекция ==> |
| VII. Предварительный диагноз | | | Условия хранения электрических машин |
Дата добавления: 2017-09-19; просмотров: 689;
