Вакуумные дуговые печи постоянного тока
Для повышения качества металла, полученного в других установках (например, в ДСП), его переплавляют при низком давлении в вакуумных дуговых печах (ВДП), в результате чего в металле уменьшается содержание вредных примесей и растворенных газов. ВДП применяют в основном для выплавки слитков высокореакционных металлов (титана, ниобия, вольфрама, циркония, тантала, молибдена), а также для переплава специальных высококачественных сталей, в результате чего они не только очищаются, но и приобретают более плотную структуру. Рабочее давление в камере печи может составлять 1,0-0,001 Па в зависимости от требований к получаемому металлу. В современных ВДП получают слитки массой от нескольких сотен килограммов до 50-60 т.
В качестве материалов электродов в ВДП используются различные продукты металлургического передела. Так, при плавке титана круглые электроды изготовляют прессованием титановой губки. При переплавке вольфрама, молибдена и ниобия электроды изготовляют из штабиков путем стыковой сварки и сборки электродов-пакетов. При переплавке сталей в качестве электродов применяют прокат или специальные штанги, полученные методом непрерывной разливки или ковки. В некоторых установках применяют нерасходуемые электроды, а переплавляемый металл кусками подается в кристаллизатор. Каждый из этих способов, в свою очередь, может быть осуществлен по двум схемам: плавка в глухой кристаллизатор (рис. 4.9, а) и плавка с вытягиванием слитка (рис. 4.9, б).
Основной частью печи является рабочая камера, к которой присоединена вакуумная система. Электрод 1 подвешен к подвижному штоку, проходящему через вакуумное уплотнение, расположенное в верхней части камеры. К нижней части рабочей камеры присоединяется водоохлаждаемый кристаллизатор 7 с рубашкой водяного охлаждения. К электроду подается отрицательный, а к кристаллизатору положительный полюс источника питания. В печи, работающей по схеме с вытягиваемым слитком (рис. 4.9, б), имеется проходящий через вакуумное уплотнение 3 шток 4 для вытягивания слитка. Металл наплавляется на поддон 5 и по мере роста слитка 6 опускается вниз. Процесс плавки начинается с создания вакуума в камере печи и опускания электрода до крайнего нижнего положения. После короткого замыкания или пробоя межэлектродного промежутка возникает дуга. Под действием выделяющейся теплоты электрод расплавляется, и металл небольшими каплями перетекает на слиток.
Объем кристаллизатора и размеры электрода согласованы. В конце плавки весь электрод переходит в расплав, а испаряющиеся примеси и газы откачиваются вакуумной системой. Такая печь называется печью с расходуемым электродом, широко применяется в промышленности. В печах с нерасходуемыми электродами есть опасность загрязнения переплавляемого металла материалом электрода.
б) |
а) |
Рис. 4.9. Схема ВДП с глухим кристаллизатором (а)
и с вытягиванием слитка (б)
Основные элементы печи: рабочая камера; шток-электрододержатель; расходуемые электроды; кристаллизатор; поддон; соленоид.
Рабочая камера представляет собой водоохлаждаемую сварную конструкцию цилиндрической формы. В верхней части рабочей камеры установлены подсветы и смотровые окна, позволяющие наблюдать за горением дуги и наплавлением слитка. Для дистанционного наблюдения за ходом процесса к гляделкам пристраиваются специальные перископы, проектирующие изображение рабочей зоны на экран. К нижнему фланцу камеры прикреплен кристаллизатор.
Шток-электрододержатель служит для закрепления и перемещения расходуемого электрода и подвода к нему тока. Он состоит из нескольких коаксиально расположенных труб, наружная медная труба является токоведущей. Внутренние стальные трубы обеспечивают механическую прочность конструкции штока. Между трубами имеются полости для прохода охлаждающей воды. Перемещение штока и расходуемого электрода обеспечивается электрическим или гидравлическим приводом.
Кристаллизатор состоит из внутренней гильзы и наружного стального немагнитного кожуха. Между ними имеется полость для охлаждающей воды. Гильзу изготовляют из материала с хорошей теплопроводностью, не смачивающегося жидким металлом.
Поддон закрывает низ кристаллизатора, входит внутрь или примыкает к торцу его гильзы. Основа поддона – массивный медный диск, снабженный стальной рубашкой водяного охлаждения. Для предотвращения возможного прожога медного диска электрической дугой в начале плавки на него укладывают темплет из переплавляемого металла толщиной 50 мм.
Соленоид устанавливают на боковой поверхности кристаллизатора. Он создает аксиальное с ним магнитное поле. Взаимодействие поля соленоида с током дуги и током, растекающимся в ванне расплавленного металла, приводит к повышению напряжения на дуге, предотвращает переброски дуги на стенку кристаллизатора, стабилизирует дугу. При этом возникает вращение жидкого металла в ванне, что улучшает структуру переплавляемого металла. Питание соленоида производится от полупроводниковых выпрямителей, позволяющих при необходимости производить резкое увеличение и реверсирование тока намагничивания.
Для литья в вакууме существуют специальные ВДП, которые подразделяют на две группы: печи с разливкой при горящей дуге и печи с разливкой после отключения дуги. Конструкция печи показана на рис. 4.10.
Печь состоит из тигеля 1, электрода 2, камеры 3, формы 4 для слива расплавленного металла.
В таблице 4.5 представлены сравнительные характеристики стоимости и расхода электроэнергии вагранок, ДСП, индукционных печей.
Рис. 4.10. Схема вакуумной дуговой печи для фасонного литья:
1– тигель; 2– электрод; 3– камера; 4 – форма
Таблица 4.5
Сравнительные характеристики вагранок,
ДСП и индукционных печей
Тип плавильного агрегата | Относительная стоимость 1 т чугуна | Расход электро- энергии, кВт·ч/т |
Газовая вагранка | 1,0 | 50-70 |
Дуговая сталеплавильная печь переменного тока | 2,0 | 600-800 |
Дуговая сталеплавильная печь постоянного тока | 1,8 | 475-550 |
Индукционная печь повышенной частоты | 2,0 | 1200-1300 |
Индукционная печь средней частоты | 1,4 | 500-600 |
Дата добавления: 2017-06-02; просмотров: 1528;