ИСПЫТАНИЯ НА НАДЕЖНОСТЬ

 

6.1 КОЛИЧЕСТВЕННЫЕ ПОКАЗАТЕЛИ НАДЕЖНОСТИ

 

Надежность, одно из важнейших свойств изделий аэрокосмической техники, оценивается с помощью количественных показателей. Количественный показатель надежности – числовое значение показателя, характеризующее одно или несколько свойств, составляющих надежность изделия. Количественные показатели надежности в зависимости от условий ее обеспечения могут изменяться на различных стадиях создания и существования изделий – в процессе проектирования, производства и эксплуатации.

Количественные показатели надежности могут быть единичными и комплексными. Единичный показатель характеризует одно из свойств (безотказность, долговечность, ремонтопригодность, сохраняемость), составляющие надежность изделия, а комплексный – несколько свойств. Обычно показатели надежности восстанавливаемых и невосстанавливаемых изделий рассматриваются отдельно. К невосстанавливаемым изделиям относятся большинство электрорадиоэлементов (ЭРЭ), а электронные узлы на печатных платах, блоки, субблоки, в большинстве случаев, - восстанавливаемые изделия. По мере микроминиатюризации изделий аэрокосмической техники не только узлы, но и целые электронные системы (микропроцессоры) изготавливают в интегральном исполнении, и изделия все в большей степени становятся неремонтопригодными, то есть большой класс изделий электронной техники становится невосстанавливаемым.

Рассмотрим показатели надежности невосстанавливаемых изделий.

Вероятность безотказной работыизделия до момента t, под которой понимается вероятность выполнения изделием заданных функций и сохранения значений параметров в установленных пределах в течение данного промежутка времени (интервал наработки) при определенных условиях применения

 

 

или по результатам наблюдения за выборкой

 

, (6.1)

 

где: t – наработка до отказа; f(t) – плотность вероятности распределения наработки до отказа; d – число изделий, отказавших в момент времени ti;

n – число изделий, работоспособных в начальный момент ti = 0; Δdi - число изделий, отказавших за время Δti; n – Δdi - число изделий, безотказно проработавших за рассматриваемый интервал наработки Δti ; di – общее число отказавших изделий к началу промежутка времени Δti.

Интенсивность отказовλ(t), которая показывает, какая доля исправных в начальный момент рассматриваемого промежутка времени изделий в выборке отказывает к концу этого промежутка:

 

, или по результатам наблюдения за выборкой

 

, (6.2)

 

где: t – наработка до отказа; f(t) – плотность вероятности распределения наработки до отказа; d – число изделий, отказавших в момент времени ti;

n – число изделий, работоспособных в начальный момент ti = 0; Δdi - число изделий, отказавших за время Δti; n – Δdi - число изделий, безотказно проработавших за рассматриваемый интервал наработки Δti ; di – общее число отказавших изделий к началу промежутка времени Δti.

Средняя наработка t изделия до отказа представляет случайную величину, поскольку отказы изделий – случайные события. Как правило,

t > 0. Но в том случае, когда отказ происходит в момент подачи нагрузки на изделие (начало использования изделия), t = 0.

 

 

или по результатам наблюдения за выборкой

 

, (6.3)

 

где: t – наработка до отказа; f(t) – плотность вероятности распределения наработки до отказа; d – число изделий, отказавших в момент времени ti;

n – число изделий, работоспособных в начальный момент ti = 0; Δdi - число изделий, отказавших за время Δti; n – Δdi - число изделий, безотказно проработавших за рассматриваемый интервал наработки Δti ; di – общее число отказавших изделий к началу промежутка времени Δti.

Исследования, анализ и опыт эксплуатации изделий аэрокосмической техники показывают, что существует значительное расхождение между показателями надежности, полученными расчетным путем, при испытаниях в лабораторных и производственных условиях и в условиях эксплуатации. Это расхождение обусловлено тремя основными группами причин:

1) несоответствием внешних воздействий, моделируемых при лабораторных испытаниях, реальным внешним воздействиям на изделия при эксплуатации;

2) наличием различных методик установления отказов, что связано прежде всего с использованием различных критериев отказов при лабораторных испытаниях и эксплуатации;

3) отличием эксплуатационных режимов работы изделий от режимов при испытаниях.

Проблему адекватности условий испытаний реальным условиям эксплуатации можно решить уменьшая по возможности указанные различия. При этом особую сложность представляет минимизация причин первой группы. Это связано с тем, что степень соответствия моделируемых внешних воздействий реальным воздействиям определяется не только полнотой знаний о многофакторных условиях эксплуатации, но и техническими возможностями используемых для испытаний устройств, включающих испытательное оборудование (как правило, испытательные стенды и камеры), контрольно-измерительную аппаратуру, приспособления и оснастку. С усложнением изделий аэрокосмической техники существенно возрастают требования к устройствам для испытаний. Однако их совершенствование является не только сложной технической, но и экономической проблемой. Например, устройства для испытаний на широкополосную случайную вибрацию, обеспечивающие высокую адекватность условий испытаний и эксплуатации, стоят в 100 -1000 раз дороже устройств для испытаний на синусоидальную вибрацию. Поэтому на практике при конструировании испытательных устройств приходят к компромиссным решениям, стремясь, с одной стороны, создать дешевые устройства, а с другой – обеспечить адекватность условий испытаний условиям эксплуатации. При этом не следует упрощать испытания или заменять один вид нагрузки другим без тщательного предварительного анализа.

Нередко проблему адекватности испытаний реальным условиям эксплуатации изделий пытаются решить, увеличивая нагрузки при испытаниях и выбирая более жесткие допустимые пределы изменения параметров испытываемых изделий для ускорения их отказа. Каждое изделие характеризуется определенной прочностью, то есть способностью сопротивляться воздействию внешних сил, не разрушаясь и не получая остаточных деформаций. Прочность всех однотипных изделий не может быть абсолютно одинаковой. Различные дефекты материалов и технологии уменьшают прочность.

Поэтому предельное значение воздействующей нагрузки устанавливают, как правило, одинаковым для всех изделий данного типа и выбирают равным предельному значению нагрузки того изделия, которое имеет наименьшую прочность по сравнению со всеми другими. Но прочность изделия в результате старения и износа со временем уменьшается, причем скорость этого процесса зависит от приложенной нагрузки. Чем

больше нагрузка при испытаниях, тем быстрее произойдет накопление напряжений, которое может привести либо к разрушению изделия во время испытаний, либо к ускоренному старению и разрушению его при эксплуатации в результате ускорения протекающих в нем физико-химических процессов. Нагрузка, выбранная с соответствующим запасом и рекомендованная потребителю при эксплуатации, называется предельно допустимой нагрузкой. Необходимый запас прочности выбирается изготовителем исходя из возможности обеспечения в течение заданного времени установленных в ТУ показателей надежности выпускаемых изделий.

Поскольку эти показатели зависят от многих переменных, характеризующих совместное воздействие нагрузок и внешней среды, предельно допустимую нагрузку, как правило, устанавливают экспериментальным путем.

Обеспечение заданных показателей надежности в течении заданного времени зависит не только от правильно выбранной предельно допустимой нагрузки, но и от правильного выбора допустимых пределов изменения параметров изделия, то есть связано с причинами второй группы, определяющими неадекватность испытаний условиям эксплуатации. Контроль параметров изделий до испытаний производят по нормам, устанавливаемым в технологической документации в зависимости от погрешностей контрольно-измерительной аппаратуры. Эти нормы более жесткие, чем установленные ТУ.

Запас по нормам, который часто называют производственным запасом, необходим, чтобы исключить поставку изделий, не соответствующих установленным в ТУ нормам. Поэтому контрольно-измерительная аппаратура, используемая при производстве изделий, должна обладать не большей погрешностью измерений, чем аппаратура, применяемая при сдаче готовой продукции. В противном случае фактически негодные изделия будут пропущены как годные и откажут при проведении приемо-сдаточных испытаний.

Нормы на параметры зависят не только от погрешностей контрольно-измерительной аппаратуры. В производстве всегда существует технологический разброс параметров, обусловленный технологией производства и прежде всего разбросом характеристик исходных материалов и технологического оборудования. Кроме того, изменение значений параметров изделий во времени происходит в связи с протекающими в них физико-химическими процессами, вызываемыми действием нагрузок и окружающей среды.

Запас по параметрам, установленный в зависимости от их технологического разброса и конструктивных особенностей изделия, называется конструктивно-технологическим запасом. Он выражается безразмерной величиной – коэффициентом конструктивно-технологического запаса для нижнего и верхнего контрольных пределов:

 

Кзн = (xн – хнТУ)/(М[Х] – хн),

 

Кзв = (хвТУ – хв)/(хв - М[Х]), (6.4)

 

где хн и хв – наименьшее и наибольшее значения параметра в реальном распределении; хнТУ и хвТУ – нижнее и верхнее значения норм, оговоренных в ТУ; М[Х] - среднее значение параметра, заданное в ТУ.

При симметричном распределении параметров изделий знаменатели приведенных выражений, характеризующих нестабильность ТП, равны и значение Кз в обоих случаях определяется выбранными конструктивно-технологическими запасами по хн и хв.

При оценке результатов испытаний с помощью условных критериев можно не рассматривать все параметры изделия. Достаточно выбрать для наблюдения наиболее информативные из них. Параметры изделия, по которым его считают годным или условно отказавшим, называют параметрами – критериями годности (ПКГ). Допустимые изменения значений ПКГ ограничивают односторонними или двусторонними пределами. При этом минимальное и максимальное значения ПКГ могут быть как абсолютными, так и относительными.

Причины третьей группы, определяющие неадекватность испытаний изделий условиям их эксплуатации, связаны с различием режимов работы изделий при испытаниях и эксплуатации. Некоторые изделия при эксплуатации в течение длительного времени находятся в неработающем состоянии. Установлено, что именно в этот период происходит от 20 до 60% их отказов.

С другой стороны, к довольно большому числу отказов приводит эксплуатация изделий в циклическом режиме, связанном со сравнительно частыми их включениями и выключениями. Это объясняется тем, что во время переходных процессов, обусловленных включениями-выключениями изделий, в них возникают экстратоки и перенапряжения, значения которых часто намного превышают, хотя бы кратковременно, допустимые по ТУ.Иногда для упрощения испытаний изделия, предназначенные для эксплуатации в циклическом режиме, испытывают в непрерывном. Однако, как показывает практика, надежность изделий, работающих при большой частоте включений-выключений, может быть во много раз ниже надежности изделий, работающих непрерывно в течение установленного времени.

Чтобы уменьшить расхождение значений показателей надежности на стадиях испытаний и эксплуатации изделий, проводят организационные и технические мероприятия.

Организационные мероприятия включают установление единообразной процедуры сбора данных об отказах и получение возможно более полной информации о них при испытаниях и эксплуатации изделий,использование коррелированных критериев отказов при испытаниях и эксплуатации, а также одинаковых промежутков времени, в течение которых фиксируется число отказов.

Технические меры связаны с совершенствованием методов и программ испытаний на надежность, модернизацией имеющихся и разработкой новых устройств для испытаний.

 

6.2 ОРГАНИЗАЦИЯ ИСПЫТАНИЙ НА НАДЕЖНОСТЬ

 

При организации испытаний на надежность необходимо учитывать следующие факторы:

- режим функционирования изделий в процессе испытаний (непрерывный, циклический);

- характер внешних воздействий (механические, климатические, электрические, комплексные, неразрушающий контроль, разрушающий физический анализ);

- объекты сбора и состав фиксируемой информации;

- формы учетно-отчетной документации;

- правила прекращения испытаний;

- состав, обязанности и ответственность операторов (контролеров).

От степени проработки и учета указанных факторов при подготовке испытаний, зависит достоверность получаемых оценок показателей надежности.

Режим функционирования. Наиболее полную информацию можно получить при непрерывном контроле процесса испытания, когда достаточно точно фиксируются моменты отказов изделий.

Периодический контроль обеспечивает фиксацию отказов изделий в определенные планом испытаний промежутки времени. В интересах статистической обработки результатов испытаний, желательно заданное или расчетное время испытаний делить на 10 – 15 контрольных периодов.

Характер внешних воздействий.К числу внешних факторов, воздействующих на изделие, относятся: повышенная и пониженная температура среды; быстрая, постепенная и резкая смена температур; повышенная влажность; соляной туман; солнечная радиация; динамическая и статическая пыль; повышенное и пониженное атмосферное давление; плесневые грибы; синусоидальная и широкополосная случайная вибрация; механические удары одиночного и многократного действия; угловые и линейные ускорения; акустические шумы; факторы космического пространства.

Объекты сбора и состав фиксируемой информации. Правильный выбор объектов сбора статистической информации, в особенности для сложных объектов, является непростой задачей. При слишком мелком делении изделия на самостоятельные объекты сбора статистической информации усложняется работа с учетной документацией, что неизбежно ведет к снижению достоверности результатов. При чрезмерном укрупнении объектов сбора статистики может потеряться необходимая детализация информации о причине, месте отказа и о фактической наработке отдельных блоков и устройств изделия.

Особенностью статистической оценки показателей надежности является большой объем сведений, который необходимо фиксировать в каждом случае нарушения функционирования изделия. Поэтому в процессе испытаний на надежность необходимо обеспечить фиксацию следующей информации:

- общая наработка изделия и время работы от момента предыдущего отказа;

- используемые методы диагностики и место обнаружения отказа, заводской и позиционный номер отказавшего элемента, детали;

- причины отказа (поломка, износ детали, отклонение параметра и др.);

- способ устранения отказа (замена элемента, регулировка и др.);

- условия среды в момент отказа объекта испытания (температура, вибрация, удары и другие факторы, в том числе манипуляция персонала, проводящего испытания).

Достоверность первичной информации обеспечивается полнотой и регулярностью ее фиксации, а также глубиной и объективностью анализа причин отказов. Следует иметь в виду, что недостоверные первичные данные невозможно скорректировать даже самой тщательной статистической обработкой результатов испытаний.

Формы учетно-отчетной документации. Наиболее распространенным учетным документом при испытаниях на надежность являются журнал испытаний и карточка учета отказов. Журнал является своеобразным формуляром, в котором в хронологическом порядке отражается состояние изделия: время и дата начала и окончания испытания; правильность функционирования; моменты обнаружения отказов и их внешние признаки; время поиска и устранения отказа и др.

Карточки учета отказов применяются для накопления статистической информации об отказах изделий по различным признакам, на основании которой разрабатываются мероприятия по повышению надежности конкретных типов изделий.

Качественный анализ отказов и предварительная обработка результатов испытаний. Основными задачами качественного анализа являются объединение и классификация статистической информации, полученной при испытаниях.

Важным средством увеличения объема статистической информации является объединение сведений об отказах и наработке однотипных изделий, полученных при испытаниях однотипной продукции на различных предприятиях.

С точки зрения задач статистической оценки надежности, наиболее важными считаются две группы классификации отказов – по причинам возникновения и по отношению к оцениваемым показателям надежности.

1. Классификация отказов по причинам возникновения.

Здесь выделяются группы отказов: конструктивные, технологические, производственные и эксплуатационные. Для программно управляемых изделий, а таких в настоящее время большинство, необходимо выделить еще алгоритмические и программные. В результате ошибок или недоработок в алгоритмах или программах даже исправные изделия в ряде случаев неспособны выполнять свои функции. Для таких отказов характерно то, что они проявляются одинаково во всех однотипных изделиях при возникновении соответствующих условий.

2. Классификация отказов по отношению к оцениваемым показателям надежности.

Она предусматривает разделение отказов на «учитываемые» и «не учитываемые». При этом к «не учитываемым» относятся:

- отказы, вызванные внешними факторами, не предусмотренными ТУ на изделие, а также отказы из-за нарушений инструкций по технической эксплуатации;

- отказы опытных образцов, причины которых устраняются в процессе доработок;

- отказы, не влияющие на конкретный оцениваемый показатель.

 

6.3 ИСПЫТАНИЯ НА ДОЛГОВЕЧНОСТЬ

 

Показатели надежности (средняя наработка до отказа и вероятность безотказной работы), полученные по результатам приемо-сдаточных испытаний, не характеризуют действительную надежность изделий, поскольку их значения выбирают исходя из разумных объемов выборки, причем эти показатели даже при совершенствовании производства остаются неизменными вследствие корректировки значений ПКГ в сторону ужесточения. Испытания на безотказность служат для определения стабильности параметров изделия, а также для определения стабильности производственного процесса.

Для получения количественных показателей производственной надежности проводят испытания на долговечность и определение гамма-процентного ресурсапри значениях ПКГ, установленных с учетом конструктивно-технологических запасов. Как правило, испытания осуществляются до наступления предельного состояния изделия.

Испытания с целью определения гамма-процентного ресурса являются продолжением испытаний на долговечность. При определении гамма-процентного ресурса допускается группировать изделия, имеющие одинаковое функциональное назначение, сходные технологии изготовления, конструктивное исполнение и применяемые материалы. В этом случае испытания проводят на изделиях одного типа, а результаты распространяют на всю группу изделий.

Под гамма-процентным ресурсом понимают наработку , в течение которой изделие не достигает предельного состояния с заданной вероятностью γ. Опытное значение γ подсчитывают по формуле

 

γ = (1 – d/nд) 100, (6.5)

 

где d – число отказов за время испытаний; nд – объем выборки при испытаниях на долговечность.

Гамма-процентный ресурс вычисляют по накопленным результатам испытаний. В процессе испытаний периодически проверяют работоспособность испытываемых изделий для выявления предельного состояния. Образцы, достигшие предельного состояния снимают с испытаний.

Испытания на долговечность являются фактически ресурсными испытаниями. Их проводят до получения числа отказавших изделий

 

 

. (6.6)

 

 

Испытания на долговечность весьма трудоемки и продолжительны (до 100 тыс. часов) и связаны с большими экономическими затратами. Так, для проведения испытаний изделий с наработкой 10 тыс. часов требуется 1,5 – 2 года. Поэтому результаты испытаний на долговечность не могут служить основанием для забраковки продукции, выпускаемой в данный момент времени. Однако изготовитель обязан в процессе испытаний проводить анализ отказов и на его основе разрабатывать необходимые мероприятия по устранению причин отказов.

За гамма-процентный ресурс принимают время испытаний, соответствующее середине интервала времени между появлением двух последних отказов. По результатам испытаний на долговечность уточняют значения гамма-процентного ресурса изделия в технической документации. В итоге длительных испытаний получают количественные показатели производственной надежности, которые, как и долговечность, не могут быть заранее заданы и, следовательно, гарантированы изготовителем.

 

6.4 ИСПЫТАНИЯ НА СОХРАНЯЕМОСТЬ

 

Помимо безотказности и долговечности надежность изделий характеризуется также сохраняемостью. Проведение испытаний на сохраняемость необходимо потому, что хранение является неотъемлемой частью эксплуатации изделий. Календарная продолжительность времени хранения изделий, в течение и после которого значения заданных показателей надежности сохраняются в установленных пределах, составляет срок сохраняемости изделия.

Испытания на длительное хранение проводят, как правило, в отапливаемом складе, размещая изделия на стеллажах. В отдельных случаях испытания могут проводиться под навесом (испытания в полевых условиях), что фактически соответствует ужесточению условий испытаний на длительное хранение.

Целями проведения испытаний на сохраняемость являются: проверка изделий на сохраняемость; накопление информации о техническом ресурсе сохраняемости; уточнение норм на показатели сохраняемости; разработка рекомендаций по повышению сохраняемости.

В качестве критерия оценки сохраняемости принимают значение гамма-процентного срока сохраняемости, опытное значение которого определяется формулой

 

γ = (1 – d/nс) 100, (6.7)

 

где d – число изделий, отказавших за время хранения; nс – объем выборки, необходимый для испытаний на сохраняемость.

Результаты испытаний оценивают как положительные, если значение гамма-процентного срока сохраняемости превышает установленное в технической документации. По окончании испытаний на длительное хранение изделия могут быть оставлены в тех же условиях для определения фактического времени сохраняемости.

 

6.5 УСКОРЕННЫЕ ИСПЫТАНИЯ НА НАДЕЖНОСТЬ

 

Значительная продолжительность испытаний на надежность (в особенности испытаний на долговечность и сохраняемость) делает практически невозможным использование их результатов для оперативного управления качеством изготовляемой продукции. Поэтому большое значение придается ускоренным испытаниям, обеспечивающим получение информации о надежности изделий за более короткие сроки на меньшем числе образцов. Ускоренные испытания имеют цель выявить изменение параметров ЭРЭ и сборочных единиц изделий аэрокосмической техники при сокращении длительности испытаний за счет интенсификации режимов работы и условий эксплуатации изделий.

Целью ускоренных испытаний является достижение состояния отказа или определение повреждений вследствие действия определенного механизма разрушения. Обязательным условием при проведении ускоренных испытаний является меньшее время, чем требовалось бы при эксплуатации изделия. Интенсивность воздействия параметров, от которых зависит долговечность, может быть повышена для сокращения продолжительности испытаний. Особую важность имеет определение соотношения между ускоренными испытаниями изделия и реальными условиями эксплуатации, относительно которых осуществляется ускорение.

Хотя использование ускоренных испытаний может быть опасным, поскольку они вносят фактор неопределенности, избежать их в общем случае нельзя. Это объясняется тем, что проектируемая долговечность электронных блоков слишком велика для проведения испытаний в реальных условиях эксплуатации.

В общем случае величину, показывающую во сколько раз уменьшается значение показателей долговечности или срока сохраняемости при испытаниях, относительно заданных значений показателей долговечности или срока сохраняемости в эксплуатации, называют коэффициентом ускорения испытаний

 

Ку = tн/tу = λун, (6.8)

 

где tн , tу - время испытаний в нормальном и ускоренном режимах соответственно; λу , λн – интенсивности отказов в указанных режимах.

Ускорение испытаний обычно достигается ужесточением воздействующих факторов (температуры, влажности, электрических, механических и других нагрузок).

Основной научной проблемой теории испытаний, в том числе и ускоренных, является разработка и исследование моделей объектов и процессов их старения и изнашивания. Наиболее часто в качестве модели старения и изнашивания принимают математическую модель в виде однородной или неоднородной марковской цепи. Исходя из модели процессов износа и старения, можно выделить три основных метода ускорения испытаний.

Первый метод, называемый форсированными испытаниями, заключается в ужесточении режимов испытаний. В этом режиме, как правило, превышаются предельные значения, при которых еще сохраняется нормальная работа изделия.

Недостатками подобного метода испытаний являются:

- возможность непредвиденного изменения физико-химических процессов старения, износа или самовосстановления элементов и сборочных единиц;

- практическая невозможность числовой оценки корреляции между значениями параметров испытаний в нормальных и ужесточенных режимах;

- невозможность количественных оценок показателей надежности испытуемых изделий – технического ресурса, времени наработки на отказ, сохраняемости и др.

В силу этих особенностей первый метод ускорения можно применять при сравнительных или контрольных испытаниях.

Второй метод ускорения испытаний основан на временной оценке поведения прогнозируемого параметра. В данном случае учитывается эволюционная тенденция развития процессов старения и изнашивания и тем самым определяется момент отказа. Для высоконадежных изделий возможны варианты прекращения испытаний до наступления отказа. В качестве прогнозируемых показателей могут быть показатели качества изделия, либо функции этих показателей.

Основными недостатками второго метода ускоренных испытаний являются:

- трудность нахождения прогнозируемых параметров (особенно в сложных изделиях), связанная с учетом одновременного действия многочисленных факторов;

- ограниченная возможность установления предельно-допустимых режимов функционирования изделий, что не позволяет с высокой достоверностью прогнозировать моменты их отказа;

- малые значения коэффициентов ускорения, которые лежат в пределах 2,0 – 3,5.

В силу изложенных особенностей второй метод целесообразно применять для определительных испытаний, а также в случае необходимости разделения изделий по качественным группам. Кроме того, этот метод находит применения при ускоренных неразрушающих испытаниях.

Третий метод ускоренных испытаний заключается в совместном применении первого и второго метода. Для третьего комбинированного метода ускоренных испытаний характерны следующие недостатки;

- невозможность проведения одновременного испытания нескольких изделий;

- сложность вычислительных процедур.

При анализе недостатков каждого метода ускоренных испытаний необходимо учитывать, что широкое применение вычислительной техники в основном исключает недостатки, связанные с большим объемом вычислений. Очевидно, что для повышения эффективности испытаний на надежность и снижении затрат следует, где возможно, увеличивать объемы вычислений, если они приводят к упрощению или сокращению сроков самих испытаний.

Методику ускоренных испытаний обычно разрабатывают на основе нормативно-технической документации с учетом специфики функционирования, назначения, условий эксплуатации и конструктивных особенностей изделий.

При ускоренных испытаниях необходимо, чтобы критерий распределения отказов во времени и по причинам, соответствовал критерию и распределению при нормальных испытаниях на надежность.

Форсирование испытаний вновь разрабатываемой и серийно выпускаемой аппаратуры организуется по этапам:

- разработка методики выбора форсирующих факторов и форсирующего режима (на основании имеющихся статистических данных) для обеспечения максимально возможного ускорения испытаний. При этом физическая природа возникновения отказов должна оставаться неизменной;

- определение интервальных значений коэффициента ускорения при различных внешних воздействующих факторах и нахождение различных законов распределения времени безотказной работы изделий;

- определение динамики распределения и выявления причин отказов во время нормальных испытаний (учет принципа наследственности);

- оценка зависимости между вероятностями безотказной работы в нормальном и форсированном режимах;

- формирование исходных данных по проведению ускоренных испытаний на надежность.

Для окончательного уточнения условий и времени форсированных испытаний необходимо учитывать время технологического прогона испытываемых изделий. Технологический прогон позволяет выявлять и устранять скрытые дефекты, допущенные в процессе проектирования, производства и испытаний.

 

 








Дата добавления: 2017-05-18; просмотров: 2754;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.045 сек.